हिंदी

Construct the truth table for the following statement pattern. (p ∧ ~ q) ↔ (q → p) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)

योग

उत्तर

p q ~q p∧~q q→p (p∧~q)↔(q→p)
T T F F T F
T F T T T T
F T F F F T
F F T F T F
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.11 | पृष्ठ ३३

संबंधित प्रश्न

Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


Write the negation of the following statement : 
If the lines are parallel then their slopes are equal.


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~ p ∨ ~ q) ↔ ~ (p ∧ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ ~p


If p is any statement then (p ∨ ∼p) is a ______.


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the negation of the following statement.

All the stars are shining if it is night.


Write the negation of the following statement.

Some continuous functions are differentiable.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not equivalent to p → q.


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


Write the negation of the following statement:

(p `rightarrow` q) ∨ (p `rightarrow` r)


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×