हिंदी

Using the truth table, prove the following logical equivalence. ~p ∧ q ≡ [(p ∨ q)] ∧ ~p - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p

योग

उत्तर

1 2 3 4 5 6
p q ~p ~p∧q (p∨q) (p∨q)∧~p
T T F F T F
T F F F T F
F T T T T T
F F T F F F

In the above truth table, the entries in columns 4 and 6 are identical.

∴ ~p ∧ q ≡ [(p ∨ q)] ∧ ~p

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Miscellaneous Exercise 1 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Miscellaneous Exercise 1 | Q 4.14 | पृष्ठ ३३

संबंधित प्रश्न

Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`


Write the dual of the following statements: (p ∨ q) ∧ T


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth tables for the following statement pattern.

(p ∧ r) → (p ∨ ~ q)


Prove that the following statement pattern is a tautology.

(p ∧ q) → q


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Using the rules of negation, write the negation of the following:

~(p ∨ q) → r


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.


If p → (∼p v q) is false, then the truth values of p and q are respectively


The equivalent form of the statement ~(p → ~ q) is ______.


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×