हिंदी

Examine whether the statement pattern [p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.

सारिणी

उत्तर

[p → (~q ∨ r)] ↔ ~[p → (q → r)]

p q r ~q ~q ∨ r p →
(~q ∨ r)
q → r p →
(q →r)
~[p →
(q → r)]
[p → (~q ∨ r)]
↔ ~[p → (q → r)]
T T T F T T T T F F
T T F F F F F F T F
T F T T T T T T F F
T F F T T T T T F F
F T T T T T T T F F
F T F F F T F T F F
F F T T T T T T F F
F F F T T T T T F F

All the truth values in the last column are F.

Hence, it is contradiction.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.1: Mathematical Logic - Q.5

संबंधित प्रश्न

Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`


Write the dual of the following statements: (p ∨ q) ∧ T


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p ∨ q) ∧ ∼p] ∧ ∼q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Prepare truth tables for the following statement pattern.

p → (~ p ∨ q)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Prove that the following statement pattern is a contradiction.

(p → q) ∧ (p ∧ ~ q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Using the truth table, verify

~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

(p ∨ q) ∨ r


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the dual statement of the following compound statement.

A number is a real number and the square of the number is non-negative.


Write the negation of the following statement.

All the stars are shining if it is night.


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Write the negation of the following statement.

Some continuous functions are differentiable.


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[p → (~q ∨ r)] ↔ ~[p → (q → r)]


Write the converse, inverse, contrapositive of the following statement.

If 2 + 5 = 10, then 4 + 10 = 20.


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


The false statement in the following is ______.


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


The contrapositive of p → ~ q is ______


Write the dual of the following.

13 is prime number and India is a democratic country


If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×