हिंदी

Write the converse, inverse, and contrapositive of the following statement. If he studies, then he will go to college. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.

योग

उत्तर

Let p: He studies.

q: He will go to college.

∴ The given statement is p → q.

Its converse is q → p.

If he will go to college then he studies.

Its inverse is ~ p → ~ q.

If he does not study then he will not go to college.

Its contrapositive is ~ q → ~ p.

If he will not go to college then he does not study.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.8 [पृष्ठ २१]

संबंधित प्रश्न

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”


Write the dual of the following statements: (p ∨ q) ∧ T


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[(p → q) ∧ ∼ q] → ∼ p


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


(p ∧ q) → r is logically equivalent to ________.


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Prove that the following pair of statement pattern is equivalent.

p → q and ~ q → ~ p and ~ p ∨ q


Write the dual of the following:

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r


Write the dual statement of the following compound statement.

13 is prime number and India is a democratic country.


Write the negation of the following statement.

All the stars are shining if it is night.


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


The false statement in the following is ______.


The contrapositive of p → ~ q is ______


Write the dual of the following.

13 is prime number and India is a democratic country


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______. 


Which of the following is not equivalent to p → q.


The equivalent form of the statement ~(p → ~ q) is ______.


Which of the following is not true for any two statements p and q?


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×