Advertisements
Advertisements
प्रश्न
Prove that the following statement pattern is a tautology.
(~p ∧ ~q ) → (p → q)
उत्तर
p | q | ~p | ~q | ~p∧~q | p→q | (~p∧~q)→(p→q) |
T | T | F | F | F | T | T |
T | F | F | T | F | F | T |
F | T | T | F | F | T | T |
F | F | T | T | T | T | T |
All the truth values in the last column are T. Hence, it is a tautology.
APPEARS IN
संबंधित प्रश्न
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Prove that the following statement pattern is equivalent :
(p ∨ q) → r and (p → r) ∧ (q → r)
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
(p ∧ q) → r is logically equivalent to ________.
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(~ q ∧ p) ∧ (p ∧ ~ p)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Prove that the following pair of statement pattern is equivalent.
p ↔ q and (p → q) ∧ (q → p)
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
Some continuous functions are differentiable.
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
The false statement in the following is ______.
The contrapositive of p → ~ q is ______
Which of the following is not equivalent to p → q.
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
The converse of contrapositive of ∼p → q is ______.
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].