Advertisements
Advertisements
प्रश्न
Show that the following statement pattern is contingency.
(p∧~q) → (~p∧~q)
उत्तर
p | q | ~p | ~q | p∧~q | ~p∧~q | (p∧~q)→(~p∧~q) |
T | T | F | F | F | F | T |
T | F | F | T | T | F | F |
F | T | T | F | F | F | T |
F | F | T | T | F | T | T |
The truth values in the last column are not identical. Hence, it is contingency.
APPEARS IN
संबंधित प्रश्न
Using truth table examine whether the following statement pattern is tautology, contradiction or contingency `(p^^~q) harr (p->q)`
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(∼ p → q) ∧ (p ∧ r)
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
(p → q) ∧ (p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r
Prove that the following statement pattern is a tautology.
(p ∧ q) → q
Prove that the following statement pattern is a tautology.
(~p ∧ ~q ) → (p → q)
If p is any statement then (p ∨ ∼p) is a ______.
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Prove that the following pair of statement pattern is equivalent.
~(p ∧ q) and ~p ∨ ~q
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual statement of the following compound statement.
A number is a real number and the square of the number is non-negative.
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Using the rules of negation, write the negation of the following:
~(p ∨ q) → r
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
Construct the truth table for the following statement pattern.
(p ∨ ~q) → (r ∧ p)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[p → (~q ∨ r)] ↔ ~[p → (q → r)]
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
State the dual of the following statement by applying the principle of duality.
2 is even number or 9 is a perfect square.
Write the dual of the following.
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
Choose the correct alternative:
If p is any statement, then (p ˅ ~p) is a
Examine whether the statement pattern
[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.
The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______.
The statement pattern (∼ p ∧ q) is logically equivalent to ______.
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
If p → q is true and p ∧ q is false, then the truth value of ∼p ∨ q is ______
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].