हिंदी

Write the dual statement of the following compound statement. Radha and Sushmita cannot read Urdu. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the dual statement of the following compound statement.

Radha and Sushmita cannot read Urdu.

एक पंक्ति में उत्तर

उत्तर

Radha or Sushmita cannot read Urdu.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Mathematical Logic - Exercise 1.7 [पृष्ठ १७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Mathematical Logic
Exercise 1.7 | Q 2.3 | पृष्ठ १७

संबंधित प्रश्न

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Use the quantifiers to convert the following open sentence defined on N into true statement
5x - 3 < 10


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

(p ∨ q) → r ≡ (p → r) ∧ (q → r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p → q) ∧ (p → r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∧ (p → q)] → q


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth tables for the following statement pattern.

(~ p ∨ q) ∧ (~ p ∨ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Show that the following statement pattern is contingency.

p ∧ [(p → ~ q) → q]


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Using the truth table, verify

~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q


Write the negation of the following statement.

∃ n ∈ N, (n2 + 2) is odd number.


Write the negation of the following statement.

Some continuous functions are differentiable.


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


Construct the truth table for the following statement pattern.

(p ∨ r) → ~(q ∧ r)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

p ∧ (~p ∨ q) ≡ p ∧ q


State the dual of the following statement by applying the principle of duality.

(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Write the dual of the following.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Choose the correct alternative:

If p is any statement, then (p ˅ ~p) is a


Which of the following is not equivalent to p → q.


The statement pattern (∼ p ∧ q) is logically equivalent to ______.


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.