हिंदी

Write the Degree of the Differential Equation D 2 Y D X 2 + X ( D Y D X ) 2 = 2 X 2 Log ( D 2 Y D X 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]

उत्तर

We have, 
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 - 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right) = 0\]
\[\text{ Here, we observe that LHS of the differential equation cannot be expressed as a polynomial in }\frac{dy}{dx} . \text{ So, its degree is not defined .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Very Short Answers [पृष्ठ १३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Very Short Answers | Q 10 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Determine the order and degree (if defined) of the differential equation:

`((ds)/(dt))^4 + 3s  (d^2s)/(dt^2) = 0`


Determine the order and degree (if defined) of the differential equation:

y′ + y = ex


Determine the order and degree (if defined) of the differential equation:

y″ + 2y′ + sin y = 0


The order of the differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is ______.


\[\frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^{2/3}\]

\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

\[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x \sin \left( \frac{d^2 y}{d x^2} \right)\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Write the order of the differential equation of the family of circles touching X-axis at the origin.


Write the order of the differential equation of all non-horizontal lines in a plane.


Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


State whether the following statement is True or False:

Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.


The order and degree of the differential equation `sqrt(dy/dx) - 4 dy/dx - 7x` = 0 are ______.


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×