Advertisements
Advertisements
प्रश्न
Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`
उत्तर
Order is the highest order derivative present in the differential equation
And the degree is the power of the highest order derivative.
We have given the differential equation:
`"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`
Here, order is 2 and degree is 2.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
The order of the differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is ______.
Define degree of a differential equation.
Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]
What is the degree of the following differential equation?
Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]
The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
Determine the order and degree (if defined) of the following differential equation:-
y"' + y2 + ey' = 0
Determine the order and degree of the following differential equations.
`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
Degree of the given differential equation
`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is
The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is
The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.
The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.
The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.
The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.