Advertisements
Advertisements
प्रश्न
उत्तर
\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^\frac{3}{2} \]
Squaring both sides, we get
\[ \Rightarrow 25 \left( \frac{d^2 y}{d x^2} \right)^2 = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^3 \]
\[ \Rightarrow 25 \left( \frac{d^2 y}{d x^2} \right)^2 = 1 + 3 \left( \frac{dy}{dx} \right)^2 + 3 \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6 \]
\[ \Rightarrow 25 \left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right)^6 - 3 \left( \frac{dy}{dx} \right)^4 - 3 \left( \frac{dy}{dx} \right)^2 - 1 = 0\]
In this differential equation, the order of the highest order derivative is 2 and its power is 2. So, it is a differential equation of order 2 and degree 2.
It is a non-linear differential equation, as its degree is 2, which is greater than 1.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
y' + 5y = 0
The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = e^x (acos x + b sin x) : (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
(y'')2 + (y')3 + sin y = 0
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.
Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]
Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is
The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
Determine the order and degree (if defined) of the following differential equation:-
y"' + y2 + ey' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x2 + 2x + C y' − 2x − 2 = 0
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
Choose the correct alternative.
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.
State whether the following is True or False:
The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.
Select and write the correct alternative from the given option for the question
The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively
State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x
The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The order of the differential equation of all circles of given radius a is ______.
The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.
The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.
The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.
The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?