Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[ e^\frac{dy}{dx} = x + 1\]
Taking log on both sides, we get
\[\frac{dy}{dx} \log e = \log\left( x + 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} = \log\left( x + 1 \right)\]
\[ \Rightarrow dy = \left\{ \log\left( x + 1 \right) \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \log\left( x + 1 \right) \right\}dx\]
\[ \Rightarrow y = \log \left( x + 1 \right)\int1 dx - \int\left[ \frac{d}{dx}\left( \log x + 1 \right)\int1 dx \right]dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\frac{x}{x + 1}dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\left( 1 - \frac{1}{x + 1} \right)dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - x + \log\left( x + 1 \right) + C . . . . . \left( 1 \right)\]
\[ \text{ It is given that }y\left( 0 \right) = 3 . \]
\[ \therefore 3 = 0 \times \log \left( 0 + 1 \right) - 0 + \log\left( 0 + 1 \right) + C\]
\[ \Rightarrow C = 3\]
\[\text{ Substituting the value of C in }\left( 1 \right), \text{ we get }\]
\[y = x \log \left( x + 1 \right) + \log\left( x + 1 \right) - x + 3\]
\[ \Rightarrow y = \left( x + 1 \right) \log\left( x + 1 \right) - x + 3\]
\[\text{ Hence, }y = \left( x + 1 \right) \log\left( x + 1 \right) - x + 3\text{ is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`
Determine the order and degree (if defined) of the differential equation:
`(d^4y)/(dx^4) + sin(y^("')) = 0`
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]
Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]
Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]
Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree (if defined) of the following differential equation:-
y" + (y')2 + 2y = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = cos x + C y' + sin x = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equation:
`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`
Determine the order and degree of the following differential equations.
`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `
Find the order and degree of the following differential equation:
`x+ dy/dx = 1 + (dy/dx)^2`
Order of highest derivative occurring in the differential equation is called the ______ of the differential equation
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.
The order of the differential equation of all circles of given radius a is ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
State the order of the above given differential equation.
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
y2 = (x + c)3 is the general solution of the differential equation ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`