Advertisements
Advertisements
प्रश्न
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(1+x^2)` `y'=(xy)/(1+x^2)`
उत्तर
We have,
`y'=(xy)/(1+x^2) .......... (1)`
Now,
`y=sqrt(1+x^2)`
`rArr y'=x/(sqrt(1+x^2))`
Putting the above value in (1), we get
`"LHS" =x/(sqrt(1+x^2))`
`=x/(sqrt(1+x^2))xxsqrt(1+x^2)/sqrt(1+x^2)`
`=(xy)/(1+x^2)="RHS"`
Thus, `y=sqrt(1+x^2)` is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.
(xy2 + x) dx + (y − x2y) dy = 0
Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]
Write the order of the differential equation of the family of circles touching X-axis at the origin.
Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]
Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree (if defined) of the following differential equation:-
(y"')2 + (y")3 + (y')4 + y5 = 0
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Determine the order and degree of the following differential equation:
`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`
Determine the order and degree of the following differential equation:
`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`
Determine the order and degree of the following differential equation:
`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`
Determine the order and degree of the following differential equations.
`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`
Determine the order and degree of the following differential equations.
`dy/dx = 7 (d^2y)/dx^2`
Order and degree of a differential equation are always positive integers.
State whether the following is True or False:
The order of highest derivative occurring in the differential equation is called degree of the differential equation.
State whether the following is True or False:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.
Find the order and degree of the following differential equation:
`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`
The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.
The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______
The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.
The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.
The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.
The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?