Advertisements
Advertisements
प्रश्न
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x2 + 2x + C y' − 2x − 2 = 0
उत्तर
We have,
y' − 2x − 2 = 0 .....(1)
Now,
y = x2 + 2x + C
⇒ y' = 2x + 2
Putting the above value in (1), we get
LHS = 2x + 2 − 2x − 2 = 0 = RHS
Thus, y = x2 + 2x + C is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`
Determine the order and degree (if defined) of the differential equation:
y′′′ + 2y″ + y′ = 0
The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.
(xy2 + x) dx + (y − x2y) dy = 0
(y'')2 + (y')3 + sin y = 0
Define degree of a differential equation.
Write the order of the differential equation of the family of circles touching X-axis at the origin.
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
Determine the order and degree (if defined) of the following differential equation:-
y" + (y')2 + 2y = 0
Determine the order and degree (if defined) of the following differential equation:-
y" + 2y' + sin y = 0
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Choose the correct option from the given alternatives:
The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equations.
`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `
Fill in the blank:
Order and degree of a differential equation are always __________ integers.
The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.
Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______
State whether the following statement is True or False:
The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any
State whether the following statement is True or False:
The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined
The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is
The third order differential equation is ______
The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.
Order of the differential equation representing the family of parabolas y2 = 4ax is ______.
The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`
Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.