मराठी

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:- y = x2 + 2x + C y' − 2x − 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0

बेरीज

उत्तर

We have,
y' − 2x − 2 = 0 .....(1)
Now,
y = x2 + 2x + C
⇒ y' = 2x + 2
Putting the above value in (1), we get
LHS = 2x + 2 − 2x − 2 = 0 = RHS
Thus, y = x2 + 2x + C is the solution of the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 3.2 | पृष्ठ १४४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`


Determine the order and degree (if defined) of the differential equation:

y′′′ + 2y″ + y′ = 0


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]

(xy2 + x) dx + (y − x2y) dy = 0


\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

(y'')2 + (y')3 + sin y = 0


\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

Define degree of a differential equation.


Write the order of the differential equation of the family of circles touching X-axis at the origin.


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is


Determine the order and degree (if defined) of the following differential equation:-

\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0


Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equations.

`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


State whether the following statement is True or False:  

The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The third order differential equation is ______ 


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


Order of the differential equation representing the family of parabolas y2 = 4ax is ______.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×