मराठी

S 2 D 2 T D S 2 + S T D T D S = S - Mathematics

Advertisements
Advertisements

प्रश्न

\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]
बेरीज

उत्तर

\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]

\[ \Rightarrow s\frac{d^2 t}{d s^2} + t\frac{dt}{ds} = 1\]

In this differential equation, the order of the highest order derivative is 2 and its power is 1. So, it is a differential equation of order 2 and degree 1.

It is a non-linear differential equation, as it contains the product of the dependent variable \[\left( t \right)\]  and its differential co-efficient \[\left( \frac{dt}{ds} \right)\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.01 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.01 | Q 10 | पृष्ठ ५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


The order of the differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is ______.


For the differential equation given below, indicate its order and degree (if defined).

`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`x^2 = 2y^2 log y : (x^2  + y^2) dy/dx - xy = 0`


\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]


Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the order of the differential equation of the family of circles touching X-axis at the origin.


Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]


Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]

 


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


Determine the order and degree of the following differential equation:

`(dy)/(dx) = (2sin x + 3)/(dy/dx)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`dy/dx = 7 (d^2y)/dx^2`


Order and degree of a differential equation are always positive integers.


State whether the following is True or False:

The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.


The order of the differential equation of all circles whose radius is 4, is ______.


The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______


The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.


The order of the differential equation of all circles of given radius a is ______.


Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×