Advertisements
Advertisements
प्रश्न
(xy2 + x) dx + (y − x2y) dy = 0
उत्तर
\[\left( x y^2 + x \right)dx + \left( y - x^2 y \right)dy = 0\]
\[ \Rightarrow x\left( y^2 + 1 \right)dx = y\left( x^2 - 1 \right)dy\]
\[ \Rightarrow \frac{x\left( y^2 + 1 \right)}{y\left( x^2 - 1 \right)} = \frac{dy}{dx}\]
\[ \Rightarrow x\left( y^2 + 1 \right)\frac{dy}{dx} - y\left( x^2 - 1 \right) = 0\]
\[ \Rightarrow \left( y^2 + 1 \right)\frac{dy}{dx} - y\left( x - \frac{1}{x} \right) = 0\]
In this differential equation, the order of the highest order derivative is 1 and its power is 1. So, it is a differential equation of degree 1 and order 1.
It is a non-linear equation, as the product containing dependent variable and its differential co-efficient \[\left( y^2 \frac{dy}{dx} \right)\] is present in it.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`(d^4y)/(dx^4) + sin(y^("')) = 0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)` = cos 3x + sin 3x
For the differential equation given below, indicate its order and degree (if defined).
`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
Define degree of a differential equation.
Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
Determine the order and degree (if defined) of the following differential equation:-
y"' + y2 + ey' = 0
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`
Determine the order and degree of the following differential equation:
`(dy)/(dx) = (2sin x + 3)/(dy/dx)`
Determine the order and degree of the following differential equations.
`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`
Determine the order and degree of the following differential equations.
`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`
Fill in the blank:
Order and degree of a differential equation are always __________ integers.
Find the order and degree of the following differential equation:
`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`
Find the order and degree of the following differential equation:
`x+ dy/dx = 1 + (dy/dx)^2`
State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x
Order of highest derivative occurring in the differential equation is called the degree of the differential equation
The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.
If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.
The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
State the order of the above given differential equation.
The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.
The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.
The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.
Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.