Advertisements
Advertisements
प्रश्न
Order of highest derivative occurring in the differential equation is called the degree of the differential equation
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
The order of highest derivative occurring in the differential equation is called degree of the differential equation.
APPEARS IN
संबंधित प्रश्न
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`
Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = cos x + C y' + sin x = 0
Fill in the blank:
The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.
Find the order and degree of the following differential equation:
`x+ dy/dx = 1 + (dy/dx)^2`
Choose the correct alternative:
The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively
State whether the following statement is True or False:
The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined
The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is
The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.
y2 = (x + c)3 is the general solution of the differential equation ______.
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`