Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{1}{\left( 1 + y^2 \right)}dy = \left( 1 + x^2 \right) dx \]
Integrating both sides, we get
\[\int\frac{1}{\left( 1 + y^2 \right)}dy = \int\left( 1 + x^2 \right) dx \]
\[ \Rightarrow \tan^{- 1} y = x + \frac{x^3}{3} + C\]
\[\text{ Hence, }\tan {}^{- 1} y = x + \frac{x^3}{3} +\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively
(A) 2, 3
(B) 3, 2
(C) 7, 2
(D) 3, 7
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)` = cos 3x + sin 3x
Determine the order and degree (if defined) of the differential equation:
y′ + y = ex
Determine the order and degree (if defined) of the differential equation:
y″ + (y′)2 + 2y = 0
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = xsin 3x : (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`
(xy2 + x) dx + (y − x2y) dy = 0
Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]
Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree (if defined) of the following differential equation:-
\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Determine the order and degree of the following differential equation:
`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equation:
`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`
Fill in the blank:
The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
Select and write the correct alternative from the given option for the question
The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively
Order of highest derivative occurring in the differential equation is called the ______ of the differential equation
Order and degree of differential equation are always ______ integers
Degree of the given differential equation
`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is
The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.
Order of the differential equation representing the family of parabolas y2 = 4ax is ______.
The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.
The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.
The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.
Determine the order and degree of the following differential equation:
`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x
If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.