English

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:- y = x2 + 2x + C y' − 2x − 2 = 0 - Mathematics

Advertisements
Advertisements

Question

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0

Sum

Solution

We have,
y' − 2x − 2 = 0 .....(1)
Now,
y = x2 + 2x + C
⇒ y' = 2x + 2
Putting the above value in (1), we get
LHS = 2x + 2 − 2x − 2 = 0 = RHS
Thus, y = x2 + 2x + C is the solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 144]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 3.2 | Page 144

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

y′′′ + 2y″ + y′ = 0


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


For the differential equation given below, indicate its order and degree (if defined).

`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = e^x (acos x + b sin x)  :  (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`


\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[\frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^{2/3}\]

\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

Define degree of a differential equation.


Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equation:

`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.


Degree of the given differential equation

`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.


The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.


The order of the differential equation of all circles of given radius a is ______.


The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


y2 = (x + c)3 is the general solution of the differential equation ______.


The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×