हिंदी

Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.

योग

उत्तर

We have,

y' = ex sin x

⇒ `dy/dx = e^x sin x`

⇒ `dy = e^x sin x dx`                    ....(1)

Integrating (1) both sides, we get

`int dy = inte^x sin x dx`

⇒ `y = -e^x cos x + int e^x cos x dx`

⇒ `y = -e^x cos x + e^x sin x - int e^x sin x dx`

⇒ `y = - e^x cos x +e^x sin x - y + C`

⇒ `2y = -e^x cos x + e^x sin x + C`

As pint (0, 0) lies on it, i.e., x = 0, y = 0

∴ 0 = -e0 + C

⇒ C = 1

∴ Required equation is

2y = -ex  cos x + ex sin x + 1

Hence, 2y - 1 = ex (sin x - cos x)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.4 [पृष्ठ ३९६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.4 | Q 15 | पृष्ठ ३९६

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx = (1 - cos x)/(1+cos x)`


For the differential equation, find the general solution:

`dy/dx = sqrt(4-y^2)      (-2 < y < 2)`


For the differential equation, find the general solution:

(ex + e–x) dy – (ex – e–x) dx = 0


For the differential equation, find the general solution:

y log y dx - x dy = 0


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation find a particular solution satisfying the given condition:

`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x; y = 1` When x = 0


For the differential equation find a particular solution satisfying the given condition:

`x(x^2 - 1) dy/dx = 1` , y = 0  when x = 2


For the differential equation find a particular solution satisfying the given condition:

`cos (dx/dy) = a(a in R); y = 1` when x = 0


For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)`  find the solution curve passing through the point (1, –1).


Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.


At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).


The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.


In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).


In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.


Find the particular solution of the differential equation:

`y(1+logx) dx/dy - xlogx = 0`

when y = e2 and x = e


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Solve the equation for x: 

sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0 


Solve the differential equation `"dy"/"dx" = 1 + "x"^2 +  "y"^2  +"x"^2"y"^2`, given that y = 1 when x = 0.


Fill in the blank:

The integrating factor of the differential equation `dy/dx – y = x` is __________


Verify y = log x + c is a solution of the differential equation

`x(d^2y)/dx^2 + dy/dx = 0`


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve `dy/dx = (x+y+1)/(x+y-1)  when  x = 2/3 and y = 1/3`


Solve

y dx – x dy = −log x dx


Solve

`y log y  dx/ dy = log y  – x`


Find the solution of `"dy"/"dx"` = 2y–x.


Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.


Solve the differential equation `"dy"/"dx" + 1` = ex + y.


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


Solve the following differential equation

x2y dx – (x3 + y3)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×