हिंदी

For the differential equation, find the general solution: (ex + e–x) dy – (ex – e–x) dx = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation, find the general solution:

(ex + e–x) dy – (ex – e–x) dx = 0

योग

उत्तर

(ex + e-x) dy = (ex - e-x) dx = 0

⇒ `dy = ((e^x - e^(-x))/(e^x + e^(-x))) dx`

On integrating

`int 1. dy = int ((e^x - e^(-x))/(e^x + e^(-x))) dx`

y = log (ex + e-x) + C

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.4 [पृष्ठ ३९६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.4 | Q 5 | पृष्ठ ३९६

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx = (1 - cos x)/(1+cos x)`


For the differential equation, find the general solution:

`dy/dx = (1+x^2)(1+y^2)`


For the differential equation, find the general solution:

y log y dx - x dy = 0


For the differential equation, find the general solution:

`x^5  dy/dx = - y^5`


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation, find the general solution:

ex tan y dx + (1 – ex) sec2 y dy = 0


For the differential equation find a particular solution satisfying the given condition:

`x(x^2 - 1) dy/dx = 1` , y = 0  when x = 2


For the differential equation find a particular solution satisfying the given condition:

`dy/dx` = y tan x; y = 1 when x = 0


For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)`  find the solution curve passing through the point (1, –1).


Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.


In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).


In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Find the particular solution of the differential equation:

`y(1+logx) dx/dy - xlogx = 0`

when y = e2 and x = e


Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Fill in the blank:

The integrating factor of the differential equation `dy/dx – y = x` is __________


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve `dy/dx = (x+y+1)/(x+y-1)  when  x = 2/3 and y = 1/3`


Solve

`y log  y dy/dx + x  – log y = 0`


Solve

`y log y  dx/ dy = log y  – x`


State whether the following statement is True or False:

A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation


Find the solution of `"dy"/"dx"` = 2y–x.


Find the differential equation of all non-vertical lines in a plane.


Solve the differential equation `"dy"/"dx" + 1` = ex + y.


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


Solve the following differential equation

x2y dx – (x3 + y3)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×