English

D Y D X + 2 Y = Sin X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} + 2y = \sin x\]
Sum

Solution

We have, 
\[\frac{dy}{dx} + 2y = \sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = 2\]
and
\[Q = \sin x \]
\[ \therefore \text{I.F.} = e^{\int P\ dx} \]
\[ = e^{\int2 dx} \]
\[ = e^{2x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by I.F.} = e^{2x} ,\text{ we get }\]
\[ e^{2x} \left( \frac{dy}{dx} + 2y \right) = e^{2x} \sin x \]
\[ \Rightarrow e^{2x} \frac{dy}{dx} + 2 e^{2x} y = e^{2x} \sin x\]
Integrating both sides with respect to x, we get
\[y e^{2x} = \int e^{2x} \sin x dx + C\]
\[ \Rightarrow y e^{2x} = \frac{1}{5}\int\left[ 2 e^{2x} \left( 2\sin x - \cos x \right) + e^{2x} \left( 2 \cos x + \sin x \right) \right] dx + C\]
\[\text{ Putting }e^{2x} \left( 2 \sin x - \cos x \right) = t\]
\[ \Rightarrow \left[ 2 e^{2x} \left( 2\sin x - \cos x \right) + e^{2x} \left( 2 \cos x + \sin x \right) \right] dx = dt\]
\[ \therefore y e^{2x} = \frac{1}{5}\int dt + C\]
\[ \Rightarrow y e^{2x} = \frac{t}{5} + C\]
\[y e^{2x} = \frac{e^{2x}}{5}\left( 2\sin x - \cos x \right) + C\]
\[ \Rightarrow y = \frac{1}{5}\left( 2\sin x - \cos x \right) + C e^{- 2x} \]
\[\text{ Hence, } y = \frac{1}{5}\left( 2\sin x - \cos x \right) + C e^{- 2x}\text{ is the required solution . }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 14 | Page 106

RELATED QUESTIONS

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`


\[4\frac{dy}{dx} + 8y = 5 e^{- 3x}\]

\[\frac{dy}{dx} + y = e^{- 2x}\]

\[x\frac{dy}{dx} = x + y\]

\[x\frac{dy}{dx} + y = x e^x\]

\[\frac{dy}{dx} + y = \sin x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

\[\frac{dy}{dx}\] + y tan x = cos x


Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation `"dy"/"dx" + y/x` = x2.


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


Solve the differential equation:

`"dy"/"dx" = 2^(-"y")`


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Find the general solution of the differential equation: (x3 + y3)dy = x2ydx


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×