हिंदी

The Decay Rate of Radium at Any Time T is Proportional to Its Mass at that Time. Find the Time When the Mass Will Be Halved of Its Initial Mass. - Mathematics

Advertisements
Advertisements

प्रश्न

The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

योग

उत्तर

Let N be the initial amount of radium and P be the amount of radium present at any time t.
We have,
\[\frac{dP}{dt}\alpha P\]
\[ \Rightarrow \frac{dP}{dt} = aP,\text{ where a }< 0\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log \left| P \right| = at + C . . . . . \left( 1 \right)\]
Now, P = N at t = 0
Putting P = N and t = 0 in (1), we get
\[\log \left| N \right| = C \]
\[\text{ Putting C }= \log\left| N \right|\text{ in }\left( 1 \right),\text{ we get }\]
\[\log \left| P \right| = at + \log \left| N \right|\]
\[ \Rightarrow \log \left| \frac{P}{N} \right| = at . . . . . \left( 2 \right)\]
According to the question,
\[\log\left| \frac{2N}{N} \right| = \text{at}\]
\[ \Rightarrow \log\left| 2 \right| = \text{at}\]
\[ \Rightarrow t = \frac{1}{a}\log\left| 2 \right|,\text{ where a is a constant of proportionality}\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 77 | पृष्ठ १४८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


Solve `sin x dy/dx - y = sin x.tan  x/2`


Solve the differential equation `sin^(-1) (dy/dx) = x + y`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[\frac{dy}{dx} + 2y = 6 e^x\]

\[x\frac{dy}{dx} + y = x \log x\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + 2y = \sin x\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\frac{dy}{dx}\] + y tan x = cos x


Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which of the following solutions may be used to find the number of children who have been given the polio drops?


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×