Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx}\] = y tan x − 2 sin x
उत्तर
We have,
\[\frac{dy}{dx} = y \tan x - 2\sin x\]
\[\frac{dy}{dx} - y \tan x = - 2\sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - \tan x\]
\[Q = - 2\sin x \]
\[ \therefore \text{I.F.} = e^{\int P\ dx} \]
\[ = e^{- \int\tan x dx} \]
\[ = e^{- \log\left| \sec x \right|} = \cos x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }\cos x, \text{ we get }\]
\[\cos x \left( \frac{dy}{dx} - y \tan x \right) = - 2\sin x \times \cos x\]
\[ \Rightarrow \cos x\frac{dy}{dx} - y\sin x = - \sin 2x \]
Integrating both sides with respect to x, we get
\[y \cos x = - \int\sin 2x dx + C\]
\[ \Rightarrow y\cos x = \frac{\cos 2x}{2} + C\]
\[ \Rightarrow 2y \cos x = \cos 2x + 2C\]
\[ \Rightarrow 2y \cos x = \cos 2x + K, ..........\left(\text{where }k = 2C \right)\]
\[\text{ Hence, }2y \cos x = \cos 2x + K\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
Solve the differential equation `sin^(-1) (dy/dx) = x + y`
\[\frac{dy}{dx}\] + y tan x = cos x
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.
Solve the differential equation:
`dy/dx` = cosec y