English

Find the vector and the cartesian equations of the plane containing the point i^+2k^-k^ and parallel to the lines r^=(i^+2j^+2k^)+s(2i^-3j^+2k^) and r^=(3i^+j^-2k^)+t(i^-3j^+k^) - Mathematics

Advertisements
Advertisements

Question

Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`

Sum

Solution

Since, the plane is parallel to the given lines, the cross product of the vectors `2hati - 3hatj + 2hatk` and `hati - 3hatj + hatk` will be a normal to the plane

`(2hati - 3hatj + 2hatk) xx (hati - 3hatj + hatk) = |(hati, hatj, hatk),(2, -3, 2),(1, -3, 1)| = 3hati - 3hatk`

The vector equation of the plane is `vecr.(3hati - 3hatk) = (hati + 2hatj - hatk).(3hati - 3hatk)` or `vecr.(hati - hatk)` = 2 and the cartesian equation of the plane is x – z – 2 = 0

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 Sample

RELATED QUESTIONS

Find the vector equation of the plane passing through a point having position vector `3 hat i- 2 hat j + hat k` and perpendicular to the vector `4 hat i + 3 hat j + 2 hat k`

 

Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.


Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector  `2hati + hatj + 2hatk.`


Find the vector equation of the plane which contains the line of intersection of the planes `vecr (hati+2hatj+3hatk)-4=0` and `vec r (2hati+hatj-hatk)+5=0` which is perpendicular to the plane.`vecr(5hati+3hatj-6hatk)+8=0`


Find the equation of the plane which contains the line of intersection of the planes

`vecr.(hati-2hatj+3hatk)-4=0" and"`

`vecr.(-2hati+hatj+hatk)+5=0`

and whose intercept on x-axis is equal to that of on y-axis.


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`


Find the Cartesian equation of the following planes:

`vecr.(hati + hatj-hatk) = 2`


Find the Cartesian equation of the following planes:

`vecr.(2hati + 3hatj-4hatk) = 1`


Find the Cartesian equation of the following planes:

`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2x + 3y + 4z – 12 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z – 6 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0


Find the vector and Cartesian equation of the planes that passes through the point (1, 0, −2) and the normal to the plane is `hati + hatj - hatk`


Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes  \[\vec{r} \cdot \left( \hat{i}  - \hat{j}  + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i}  + \hat{j}  + \hat{k}  \right) = 6 .\]

 


Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.


Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The Cartesian equation of the plane `vec"r" * (hat"i" + hat"j" - hat"k")` = 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×