Advertisements
Advertisements
Question
Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.
Solution
`vec(r) . (2hat(i) + 3hat(j) - hat(j) ) = 1 " and " vec(r) . (2hat(i) + 3 hat (j) -hat(k)) + 4 = 0`
`vec(r) . (hat(i) + hat(j) - hat(j) ) = 1 - ( vec(r) . (2hat(i) + 3 hat (j) -hat(k))= 4`
Taking ` r = xhat(i) + yhat(j) - zhat(k)`
x +y +z = 1 -2x - 3y + z = 4
Equation of plane is L1 + λL2 = 0
(x + y +z - 1) + λ (-2x -3y + z -4) = 0
= (1 -2 λ)x + (1 - 3 λ) + (1 + λ ) z+ (-1 -4 λ) = 0
As given it is parallel to x-axis.
⇒ Normal of the plane is perpendicular to x-axis
Direction Ratio’s of `(1 -2λ) hat(i) + (1 -3λ)hat(j) + (1 + λ) hat(k) `
1 - 2λ, 1-3 λ ,1 + λ
Direction ratios of x-axis are 1, 0, 0
So, (1- 2λ) ×1 + (1- 3λ) ×0 + (1+λ )×0 = 0
⇒` lambda =1/2`
⇒ Equation of plane is
`(1-2(1/2)x + (1-3/3)y +(1+1/2)z(-1-4(1/2)))= 0`
ox + `((-1)/2 ) y + (3/2) k - 3 = 0`
⇒ ox + y - 3z + 6 = 0
⇒ y - 3z + 6 = 0
Distance of the plane from x-axis is
`lambda = (|6-0|)/(sqrt(1^2 +3^2 +0^2)) = 6/sqrt(1+9) = 6/sqrt(10)`
`lambda = 6/sqrt(10)`
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.
Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`
Find the equation of the plane which contains the line of intersection of the planes
`vecr.(hati-2hatj+3hatk)-4=0" and"`
`vecr.(-2hati+hatj+hatk)+5=0`
and whose intercept on x-axis is equal to that of on y-axis.
The x-coordinate of a point of the line joining the points P(2,2,1) and Q(5,1,-2) is 4. Find its z-coordinate
Find the Cartesian equation of the following planes:
`vecr.(hati + hatj-hatk) = 2`
Find the Cartesian equation of the following planes:
`vecr.(2hati + 3hatj-4hatk) = 1`
Find the Cartesian equation of the following planes:
`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
2x + 3y + 4z – 12 = 0
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
3y + 4z – 6 = 0
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
x + y + z = 1
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
5y + 8 = 0
Find the vector and Cartesian equation of the planes that passes through the point (1, 0, −2) and the normal to the plane is `hati + hatj - hatk`
Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj + hatk`
Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`
Find the equation of the plane through the line of intersection of `vecr*(2hati-3hatj + 4hatk) = 1`and `vecr*(veci - hatj) + 4 =0`and perpendicular to the plane `vecr*(2hati - hatj + hatk) + 8 = 0`. Hence find whether the plane thus obtained contains the line x − 1 = 2y − 4 = 3z − 12.
Find the vector and Cartesian forms of the equation of the plane passing through the point (1, 2, −4) and parallel to the lines \[\vec{r} = \left( \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\] and \[\vec{r} = \left( \hat{i} - 3 \hat{j} + 5 \hat{k} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\] Also, find the distance of the point (9, −8, −10) from the plane thus obtained.
Find the vector and cartesian equations of the plane passing throuh the points (2,5,- 3), (-2, - 3,5) and (5,3,-3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (–1, –3, –1).
Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).
Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.
Find the vector equation of the plane that contains the lines `vecr = (hat"i" + hat"j") + λ (hat"i" + 2hat"j" - hat"k")` and the point (–1, 3, –4). Also, find the length of the perpendicular drawn from the point (2, 1, 4) to the plane thus obtained.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The Cartesian equation of the plane `vec"r" * (hat"i" + hat"j" - hat"k")` = 2 is ______.