Advertisements
Advertisements
Question
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
5y + 8 = 0
Solution
Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1, y1, z1).
5y + 8 = 0
⇒ 0x − 5y + 0z = 8 … (1)
The direction ratios of the normal are 0, −5, and 0.
`:. sqrt(0 + (-5)^2 + 0) = 5`
Dividing both sides of equation (1) by 5, we obtain
`-y = 8/5`
This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
The coordinates of the foot of the perpendicular are given by
(ld, md, nd).
Therefore, the coordinates of the foot of the perpendicular are
`(0, -1(8/5), 0) i.e (0. -8/5, 0)`
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the plane passing through a point having position vector `3 hat i- 2 hat j + hat k` and perpendicular to the vector `4 hat i + 3 hat j + 2 hat k`
Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hati + hatj + 2hatk.`
Find the vector equation of the plane which contains the line of intersection of the planes `vecr (hati+2hatj+3hatk)-4=0` and `vec r (2hati+hatj-hatk)+5=0` which is perpendicular to the plane.`vecr(5hati+3hatj-6hatk)+8=0`
Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the equation of the plane which contains the line of intersection of the planes
`vecr.(hati-2hatj+3hatk)-4=0" and"`
`vecr.(-2hati+hatj+hatk)+5=0`
and whose intercept on x-axis is equal to that of on y-axis.
Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`
Find the vector equation of a line passing through the points A(3, 4, –7) and B(6, –1, 1).
Find the Cartesian equation of the following planes:
`vecr.(hati + hatj-hatk) = 2`
Find the Cartesian equation of the following planes:
`vecr.(2hati + 3hatj-4hatk) = 1`
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
3y + 4z – 6 = 0
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
x + y + z = 1
Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj + hatk`
Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`
Find the equation of the plane through the line of intersection of `vecr*(2hati-3hatj + 4hatk) = 1`and `vecr*(veci - hatj) + 4 =0`and perpendicular to the plane `vecr*(2hati - hatj + hatk) + 8 = 0`. Hence find whether the plane thus obtained contains the line x − 1 = 2y − 4 = 3z − 12.
The Cartesian equation of the line is 2x - 3 = 3y + 1 = 5 - 6z. Find the vector equation of a line passing through (7, –5, 0) and parallel to the given line.
Find the image of a point having the position vector: `3hati - 2hatj + hat k` in the plane `vec r.(3hati - hat j + 4hatk) = 2`
Find the vector and Cartesian equations of the line passing through (1, 2, 3) and parallel to the planes \[\vec{r} \cdot \left( \hat{i} - \hat{j} + 2 \hat{k} \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i} + \hat{j} + 2 \hat{k} \right) = 6\]
Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.
Find the Cartesian equation of the plane, passing through the line of intersection of the planes `vecr. (2hati + 3hatj - 4hatk) + 5 = 0`and `vecr. (hati - 5hatj + 7hatk) + 2 = 0` intersecting the y-axis at (0, 3).
Vector equation of a line which passes through a point (3, 4, 5) and parallels to the vector `2hati + 2hatj - 3hatk`.
Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.
Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`