English

In the Following Cases, Find the Coordinates of the Foot of the Perpendicular Drawn from the Origin. 5y + 8 = 0 - Mathematics

Advertisements
Advertisements

Question

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0

Solution

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1y1z1).

5y + 8 = 0

⇒ 0x − 5y + 0z = 8 … (1)

The direction ratios of the normal are 0, −5, and 0.

`:. sqrt(0 + (-5)^2 + 0) = 5`

Dividing both sides of equation (1) by 5, we obtain

`-y = 8/5`

This equation is of the form lx + my + nz = d, where lmn are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(ldmdnd).

Therefore, the coordinates of the foot of the perpendicular are

`(0, -1(8/5), 0) i.e (0. -8/5, 0)`

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise 11.3 [Page 493]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise 11.3 | Q 4.4 | Page 493

RELATED QUESTIONS

Find the vector equation of the plane passing through a point having position vector `3 hat i- 2 hat j + hat k` and perpendicular to the vector `4 hat i + 3 hat j + 2 hat k`

 

Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.


Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector  `2hati + hatj + 2hatk.`


Find the vector equation of the plane which contains the line of intersection of the planes `vecr (hati+2hatj+3hatk)-4=0` and `vec r (2hati+hatj-hatk)+5=0` which is perpendicular to the plane.`vecr(5hati+3hatj-6hatk)+8=0`


Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`

 


Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.


Find the equation of the plane which contains the line of intersection of the planes

`vecr.(hati-2hatj+3hatk)-4=0" and"`

`vecr.(-2hati+hatj+hatk)+5=0`

and whose intercept on x-axis is equal to that of on y-axis.


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`


Find the vector equation of a line passing through the points A(3, 4, –7) and B(6, –1, 1).


Find the Cartesian equation of the following planes:

`vecr.(hati + hatj-hatk) = 2`


Find the Cartesian equation of the following planes:

`vecr.(2hati + 3hatj-4hatk) = 1`


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z – 6 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1


Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj +  hatk`


Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`


Find the equation of the plane through the line of intersection of `vecr*(2hati-3hatj + 4hatk) = 1`and `vecr*(veci - hatj) + 4 =0`and perpendicular to the plane `vecr*(2hati - hatj + hatk) + 8 = 0`. Hence find whether the plane thus obtained contains the line x − 1 = 2y − 4 = 3z − 12.


The Cartesian equation of the line is 2x - 3 = 3y + 1 = 5 - 6z. Find the vector equation of a line passing through (7, –5, 0) and parallel to the given line.


Find the image of a point having the position vector: `3hati - 2hatj + hat k` in the plane `vec r.(3hati - hat j + 4hatk) = 2`


Find the vector and Cartesian equations of the line passing through (1, 2, 3) and parallel to the planes \[\vec{r} \cdot \left( \hat{i}  - \hat{j} + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i} + \hat{j}  + 2 \hat{k} \right) = 6\]

 

Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.


Find the Cartesian equation of the plane, passing through the line of intersection of the planes `vecr. (2hati + 3hatj - 4hatk) + 5 = 0`and `vecr. (hati - 5hatj + 7hatk) + 2 = 0`  intersecting the y-axis at (0, 3).


Vector equation of a line which passes through a point (3, 4, 5) and parallels to the vector `2hati + 2hatj - 3hatk`.


Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.


Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×