English

Find the Vector Equation of a Line Passing Through the Points A(3, 4, –7) And B(6, –1, 1). - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the vector equation of a line passing through the points A(3, 4, –7) and B(6, –1, 1).

Solution

The vector equation of a line passing through the points having position vectors `bara` and `barb` is given 

by `barr=bara+lambda(barb-bara)`

`Here, bara=3hati+4hatj-7hatk and barb=6hati-hatj+hatk` 

the vector equation of the line passing through A (3, 4, -7) and B (6,-1, 1) is

`barr=(3hati+4hatj-7hatk)+lambda[(6hati-hatj+hatk)-(3hati+4hatj-7hatk)]`

`barr=(3hati+4hatj-7hatk)+lambda(3hati-5hatj+8hatk)`

 

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (July)

APPEARS IN

RELATED QUESTIONS

Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.


Parametric form of the equation of the plane is `bar r=(2hati+hatk)+lambdahati+mu(hat i+2hatj+hatk)` λ and μ are parameters. Find normal to the plane and hence equation of the plane in normal form. Write its Cartesian form.


Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane `vec r.(hati+hatj+hatk)=2`


Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`

 


Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`


The x-coordinate of a point of the line joining the points P(2,2,1) and Q(5,1,-2) is 4. Find its z-coordinate


Find the Cartesian equation of the following planes:

`vecr.(hati + hatj-hatk) = 2`


Find the Cartesian equation of the following planes:

`vecr.(2hati + 3hatj-4hatk) = 1`


Find the Cartesian equation of the following planes:

`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2x + 3y + 4z – 12 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0


Find the vector and Cartesian equation of the planes that passes through the point (1, 0, −2) and the normal to the plane is `hati + hatj - hatk`


Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj +  hatk`


The Cartesian equation of the line is 2x - 3 = 3y + 1 = 5 - 6z. Find the vector equation of a line passing through (7, –5, 0) and parallel to the given line.


Find the image of a point having the position vector: `3hati - 2hatj + hat k` in the plane `vec r.(3hati - hat j + 4hatk) = 2`


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes  \[\vec{r} \cdot \left( \hat{i}  - \hat{j}  + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i}  + \hat{j}  + \hat{k}  \right) = 6 .\]

 


Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.


Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).


Vector equation of a line which passes through a point (3, 4, 5) and parallels to the vector `2hati + 2hatj - 3hatk`.


Find the vector equation of the plane that contains the lines `vecr = (hat"i" + hat"j") + λ (hat"i" + 2hat"j" - hat"k")` and the point (–1, 3, –4). Also, find the length of the perpendicular drawn from the point (2, 1, 4) to the plane thus obtained.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.


Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×