English

Find the Vector Equation of the Plane with Intercepts 3, –4 and 2 on X, Y and Z-axis Respectively. - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.

Solution

It is given that,
Intercepts are a = 3, b = −4, c = 2
The intercept form of a plane is as follows:

`x/a+y/b+z/c=1`

`therefore x/3+y/-4+z/2=1`

The equation of the given plane is
4x − 3y + 6z = 12.

`(xhati+yhatj+zhatk).(4hati-3hatj+6hatk)=12`

`vec r.(4 hati-3hatj+6hatk)=12`

This is the vector form of the equation of the given plane.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

RELATED QUESTIONS

Find the vector equation of the plane passing through a point having position vector `3 hat i- 2 hat j + hat k` and perpendicular to the vector `4 hat i + 3 hat j + 2 hat k`

 

Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.


Find the vector equation of the plane which contains the line of intersection of the planes `vecr (hati+2hatj+3hatk)-4=0` and `vec r (2hati+hatj-hatk)+5=0` which is perpendicular to the plane.`vecr(5hati+3hatj-6hatk)+8=0`


Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`

 


Find the equation of the plane which contains the line of intersection of the planes

`vecr.(hati-2hatj+3hatk)-4=0" and"`

`vecr.(-2hati+hatj+hatk)+5=0`

and whose intercept on x-axis is equal to that of on y-axis.


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`


The x-coordinate of a point of the line joining the points P(2,2,1) and Q(5,1,-2) is 4. Find its z-coordinate


Find the vector equation of a line passing through the points A(3, 4, –7) and B(6, –1, 1).


Find the Cartesian equation of the following planes:

`vecr.(2hati + 3hatj-4hatk) = 1`


Find the Cartesian equation of the following planes:

`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2x + 3y + 4z – 12 = 0


Find the vector and Cartesian equation of the planes that passes through the point (1, 0, −2) and the normal to the plane is `hati + hatj - hatk`


Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj +  hatk`


Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`


Find the vector and Cartesian equations of the line passing through (1, 2, 3) and parallel to the planes \[\vec{r} \cdot \left( \hat{i}  - \hat{j} + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i} + \hat{j}  + 2 \hat{k} \right) = 6\]

 

Find the vector and Cartesian forms of the equation of the plane passing through the point (1, 2, −4) and parallel to the lines \[\vec{r} = \left( \hat{i} + 2 \hat{j}  - 4 \hat{k}  \right) + \lambda\left( 2 \hat{i}  + 3 \hat{j}  + 6 \hat{k}  \right)\] and \[\vec{r} = \left( \hat{i}  - 3 \hat{j}  + 5 \hat{k}  \right) + \mu\left( \hat{i}  + \hat{j}  - \hat{k} \right)\] Also, find the distance of the point (9, −8, −10) from the plane thus obtained.  

 


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes  \[\vec{r} \cdot \left( \hat{i}  - \hat{j}  + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i}  + \hat{j}  + \hat{k}  \right) = 6 .\]

 


Find the vector and cartesian equations of the plane passing throuh the points (2,5,- 3), (-2, - 3,5) and (5,3,-3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (–1, –3, –1).


Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.


Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).


Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.


Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×