Advertisements
Advertisements
प्रश्न
Write the converse, inverse, and contrapositive of the statement. "If 2 + 5 = 10, then 4 + 10 = 20."
उत्तर
Let p: 2 + 5 = 10;
q: 4 + 10 = 20
Converse: q → p
If 4 + 10 = 20
Then 2 + 5 = 10
Inverse: ∼ p → ∼ q
lf 2 + 5 ≠ 10
Then 4 + 10 ≠ 20
Contrapositive: ∼ q →∼ p
lf 4 + 10 ≠ 20
Then 2 + 5 ≠ 10.
APPEARS IN
संबंधित प्रश्न
Examine whether each of the following statement patterns is a tautology or a contradiction or a contingency.
[~(~p ∧ ~q)] v q
Write down the following statements in symbolic form :
(A) A triangle is equilateral if and only if it is equiangular.
(B) Price increases and demand falls
Using truth table prove that ∼p ˄ q ≡ (p ˅ q) ˄ ∼p
Evaluate: ∫ x . log x dx
Write converse, inverse contrapositive of the statement "If two triangles are not congruent then their areas are not equal.
Write the following compound statement symbolically.
The angle is right angle if and only if it is of measure 90°.
Write the following compound statement symbolically.
x is not irrational number but is a square of an integer.
Construct the truth table of the following statement pattern.
[(p → q) ∧ q] → p
Construct the truth table of the following statement pattern.
(p ∧ q) ↔ (q ∨ r)
Construct the truth table of the following statement pattern.
p → [∼ (q ∧ r)]
Construct the truth table of the following statement pattern.
(∼ p → ∼ q) ∧ (∼ q → ∼ p)
Construct the truth table of the following statement pattern.
(q → p) ∨ (∼ p ↔ q)
Construct the truth table of the following statement pattern.
(p ∨ ∼ q) → (r ∧ p)
Construct the truth table of the following:
[(p ∧ q) ∨ r] ∧ [∼r ∨ (p ∧ q)]
Express the following statement in symbolic form.
I like playing but not singing.
Write the truth value of the following statement.
16 is an even number and 8 is a perfect square.
Write the truth value of the following statement.
A quadratic equation has two distinct roots or 6 has three prime factors.
Write the negation of the following statement.
2 + 3 ≠ 5
Write the following statement in symbolic form.
It is not true that “i” is a real number.
Write the following statement in symbolic form.
Milk is white if and only if the sky is not blue.
Write the following statement in symbolic form.
If Kutub-Minar is in Delhi then Taj-Mahal is in Agra.
Find the truth value of the following statement.
Every accountant is free to apply his own accounting rules if and only if machinery is an asset.
If p and q are true and r and s are false, find the truth value of the following compound statement.
p ∧ (q ∧ r)
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [(~ p ∨ s) ∧ (~ q ∧ r)]
If p and q are true and r and s are false, find the truth value of the following compound statement.
[(p ∨ s) → r] ∨ ~ [~ (p → q) ∨ s]
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
~ (p ∨ q)
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Kavita is brilliant and brave.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If Kiran drives the car, then Sameer will walk.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If a real number is not rational, then it must be irrational.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
Proof is lengthy and it is not interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is not true that the proof is lengthy but it is interesting.
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p → q
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
(p ∧ q) ∧ ∼ r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ (p ∨ q) ∧ r
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If price increases, then demand falls.
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If demand falls, then price does not increase.
Write the negation of the following.
Ramesh is intelligent and he is hard working.
Write the negation of the following.
Kanchanganga is in India and Everest is in Nepal.
Write the negation of the following statement.
7 is prime number and Tajmahal is in Agra.
Write the negation of the following statement.
I will have tea or coffee.
Negation of p → (p ˅ ∼ q) is ______
A biconditional statement is the conjunction of two ______ statements.
Without using truth table prove that:
~ (p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Write the following statements in symbolic form
Even though it is not cloudy, it is still raining
Write the following statements in symbolic form.
If Qutub – Minar is in Delhi then Taj-Mahal is in Agra
If (p ∧ ~ r) → (~ p ∨ q) is a false statement, then respective truth values of p, q and r are ______.
Given 'p' and 'q' as true and 'r' as false, the truth values of p v (q ∧ ~r) and (p → r) ∧ q are respectively
Conditional of p → q is equivalent to p → ∼ q.
Let p, q and r be any three logical statements. Which of the following is true?
Write the contrapositive of the inverse of the statement:
‘If two numbers are not equal, then their squares are not equal’.
From the following set of statements, select two statements which have similar meaning.
- If a man is judge, then he is honest.
- If a man is not a judge, then he is not honest.
- If a man is honest, then he is a judge.
- If a man is not honest, then he is not a judge.
If p, q are true statements and r, s are false statements, then write the truth value of the compound statement
(p `→` ∼ r) `→` (q ∧ s)
Using the statements
p: Seema is fat,
q: Seema is happy,
Write the following statements in symbolic form;
- Seema is thin and happy.
- If Seema is fat then she is unhappy.