Advertisements
Advertisements
प्रश्न
Construct the truth table of the following statement pattern.
(q → p) ∨ (∼ p ↔ q)
उत्तर
p | q | ∼ p | q → p | ∼ p ↔ q | (q → p) ∨ (∼ p ↔ q) |
T | T | F | T | F | T |
T | F | F | T | T | T |
F | T | T | F | T | T |
F | F | T | T | F | T |
APPEARS IN
संबंधित प्रश्न
Using truth table, prove the following logical equivalence:
(p ∧ q) → r ≡ p → (q → r)
Using the truth table, prove the following logical equivalence :
p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)
Write converse, inverse contrapositive of the statement "If two triangles are not congruent then their areas are not equal.
Write the following compound statement symbolically.
The angle is right angle if and only if it is of measure 90°.
Write the following compound statement symbolically.
Angle is neither acute nor obtuse.
Write the following compound statement symbolically.
If Δ ABC is right-angled at B, then m∠A + m∠C = 90°
Write the following compound statement symbolically.
Hima Das wins gold medal if and only if she runs fast.
Write the following compound statement symbolically.
x is not irrational number but is a square of an integer.
Construct the truth table of the following statement pattern.
(p ∧ ∼q) ↔ (p → q)
Construct the truth table of the following statement pattern.
p → [∼ (q ∧ r)]
Construct the truth table of the following statement pattern.
(∼ p → ∼ q) ∧ (∼ q → ∼ p)
Construct the truth table of the following statement pattern.
[p → (q → r)] ↔ [(p ∧ q) → r]
Construct the truth table of the following statement pattern.
(p ∨ ∼ q) → (r ∧ p)
Construct the truth table of the following:
p → (q → p)
Construct the truth table of the following:
(∼p ∨ ∼q) ↔ [∼(p ∧ q)]
Construct the truth table of the following:
[(p ∧ q) ∨ r] ∧ [∼r ∨ (p ∧ q)]
Express the following statement in symbolic form.
e is a vowel or 2 + 3 = 5
Express the following statement in symbolic form.
Mango is a fruit but potato is a vegetable.
Express the following statement in symbolic form.
Milk is white or grass is green.
Express the following statement in symbolic form.
I like playing but not singing.
Express the following statement in symbolic form.
Even though it is cloudy, it is still raining.
Write the truth value of the following statement.
Earth is a planet and Moon is a star.
Write the negation of the following statement.
All men are animals.
Write the negation of the following statement.
2 + 3 ≠ 5
Write the truth value of the negation of the following statement.
`sqrt5` is an irrational number.
Write the following statement in symbolic form.
If triangle is equilateral then it is equiangular.
Write the following statement in symbolic form.
Even though it is not cloudy, it is still raining.
Find the truth value of the following statement.
If a joint venture is a temporary partnership, then discount on purchase is credited to the supplier.
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [p ∨ (r ∧ s)] ∧ ~ [(r ∧ ~ s) ∧ q]
Assuming that the following statement is true,
p : Sunday is holiday,
q : Ram does not study on holiday,
find the truth values of the following statements.
If Sunday is not holiday then Ram studies on holiday.
Assuming that the following statement is true,
p : Sunday is holiday,
q : Ram does not study on holiday,
find the truth values of the following statements.
Sunday is a holiday and Ram studies on holiday.
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
p ↔ ~ q
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
q → p
Fill in the blanks :
Conjunction of two statement p and q is symbolically written as ______.
Fill in the blanks :
Negation of “some men are animal” is –––––––––.
State whether the following statement is True or False:
The negation of 10 + 20 = 30 is, it is false that 10 + 20 ≠ 30.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Kavita is brilliant and brave.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If Kiran drives the car, then Sameer will walk.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
The necessary condition for existence of a tangent to the curve of the function is continuity.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
To be brave is necessary and sufficient condition to climb the Mount Everest.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If a real number is not rational, then it must be irrational.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If the question paper is not easy then we shall not pass.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
If proof is lengthy then it is interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is not true that the proof is lengthy but it is interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is interesting iff the proof is lengthy.
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p → r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p → q
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
(p ∧ q) ∧ ∼ r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ (p ∨ q) ∧ r
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If price increases, then demand falls.
Write the negation of the following.
Kanchanganga is in India and Everest is in Nepal.
Consider the following statements.
- If D is dog, then D is very good.
- If D is very good, then D is dog.
- If D is not very good, then D is not a dog.
- If D is not a dog, then D is not very good.
Identify the pairs of statements having the same meaning. Justify.
Write the negation of the following statement.
7 is prime number and Tajmahal is in Agra.
Write the negation of the following statement.
10 > 5 and 3 < 8
Write the negation of the following statement.
I will have tea or coffee.
Write the negation of the following statement.
∀ n ∈ N, n + 3 > 9.
Write the negation of the following statement.
∃ x ∈ A, such that x + 5 < 11.
Negation of p → (p ˅ ∼ q) is ______
Write the following compound statements symbolically.
Triangle is equilateral or isosceles
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form
Milk is white if and only if the sky is not blue
Using truth table prove that p ˅ (q ˄ r) ≡ (p ˅ q) ˄ (p ˅ r)
Write the negation of p → q
Choose the correct alternative:
A biconditional statement is the conjunction of two ______ statements
State whether the following statement is True or False:
The converse of inverse of ~ p → q is q → ~ p
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form.
If Qutub – Minar is in Delhi then Taj-Mahal is in Agra
Given 'p' and 'q' as true and 'r' as false, the truth values of p v (q ∧ ~r) and (p → r) ∧ q are respectively
If q: There are clouds in the sky then p: it is raining. The symbolic form is ______
Which of the following is false?
If p and q are true and rands are false statements, then which of the following is true?
Let p : 7 is not greater than 4 and q : Paris is in France by two statements. Then ∼(p ∨ q) is the statement ______
The Boolean expression ∼(q ⇒ ∼p) is equivalent to: ______
The Boolean expression ∼(p ∨ q) ∨ (∼p ∧ q) is equivalent to ______
Let S be a non-empty subset of R. Consider the following statement:
p: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of the statement p?
The logical statement (∼p → q) ∧ (q → p) is equivalent to: ______
Conditional of p → q is equivalent to p → ∼ q.
Let p, q and r be any three logical statements. Which of the following is true?
If p : A man is happy, q : A man is rich, then the symbolic form of ‘A man is neither happy nor rich is ______.
Write the following statement in symbolic form.
It is not true that `sqrt(2)` is a rational number.
Write the following statement in symbolic form.
4 is an odd number if 3 is not a prime factor of 6.
The statement ∼(p ↔ ∼q) is ______.
Express the following compound statement symbolically:
Delhi is in India but Dhaka is not in Sri Lanka
From the following set of statements, select two statements which have similar meaning.
- If a man is judge, then he is honest.
- If a man is not a judge, then he is not honest.
- If a man is honest, then he is a judge.
- If a man is not honest, then he is not a judge.
Write the negation of (p `leftrightarrow` q).
Using truth table prove that:
~ (p `leftrightarrow` q) ≡ (p ∧ ~ q) ∨ (q ∧ ~ p)
Construct the truth table for the statement pattern:
[(p → q) ∧ q] → p