Advertisements
Advertisements
प्रश्न
Write the following statements in symbolic form
Milk is white if and only if the sky is not blue
उत्तर
Let p: Milk is white.
q: Sky is blue.
The given statement in symbolic form is p ↔ ∼q.
संबंधित प्रश्न
Examine whether each of the following statement patterns is a tautology or a contradiction or a contingency.
[~(~p ∧ ~q)] v q
Using truth table prove that p ↔ q = (p ∧ q) ∨ (~p ∧ ~q).
Using truth table prove that ∼p ˄ q ≡ (p ˅ q) ˄ ∼p
Using truth table, prove that ~ p ∧ q ≡ (p ∨ q) ∧ ~ p
Using the truth table, prove the following logical equivalence :
p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)
Write the following compound statement symbolically.
Nagpur is in Maharashtra and Chennai is in Tamil Nadu.
Write the following compound statement symbolically.
If Δ ABC is right-angled at B, then m∠A + m∠C = 90°
Write the following compound statement symbolically.
Hima Das wins gold medal if and only if she runs fast.
Write the following compound statement symbolically.
x is not irrational number but is a square of an integer.
Construct the truth table of the following statement pattern.
[(p → q) ∧ q] → p
Construct the truth table of the following statement pattern.
(p ∧ q) ↔ (q ∨ r)
Construct the truth table of the following statement pattern.
∼ p ∧ [(p ∨ ∼ q) ∧ q]
Construct the truth table of the following statement pattern.
(q → p) ∨ (∼ p ↔ q)
Construct the truth table of the following statement pattern.
[p → (q → r)] ↔ [(p ∧ q) → r]
Construct the truth table of the following statement pattern.
(p ∨ ∼ q) → (r ∧ p)
If p ∧ q is false and p ∨ q is true, then ______ is not true.
Construct the truth table of the following:
p → (q → p)
Construct the truth table of the following:
(∼p ∨ ∼q) ↔ [∼(p ∧ q)]
Construct the truth table of the following:
∼ (∼p ∧ ∼q) ∨ q
Construct the truth table of the following:
[(p ∧ q) ∨ r] ∧ [∼r ∨ (p ∧ q)]
Express the following statement in symbolic form.
e is a vowel or 2 + 3 = 5
Express the following statement in symbolic form.
Milk is white or grass is green.
Write the truth value of the following statement.
Earth is a planet and Moon is a star.
Write the truth value of the following statement.
16 is an even number and 8 is a perfect square.
Write the negation of the following statement.
All men are animals.
Write the negation of the following statement.
2 + 3 ≠ 5
Write the truth value of the negation of the following statement.
`sqrt5` is an irrational number.
Write the truth value of the negation of the following statement.
For every x ∈ N, x + 3 < 8.
Write the following statement in symbolic form.
It is not true that “i” is a real number.
Write the following statement in symbolic form.
Even though it is not cloudy, it is still raining.
Write the following statement in symbolic form.
Stock prices are high if and only if stocks are rising.
Find the truth value of the following statement.
Every accountant is free to apply his own accounting rules if and only if machinery is an asset.
Find the truth value of the following statement.
3 is a prime number and an odd number.
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [(~ p ∨ s) ∧ (~ q ∧ r)]
If p and q are true and r and s are false, find the truth value of the following compound statement.
[(p ∨ s) → r] ∨ ~ [~ (p → q) ∨ s]
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [p ∨ (r ∧ s)] ∧ ~ [(r ∧ ~ s) ∧ q]
Assuming that the following statement is true,
p : Sunday is holiday,
q : Ram does not study on holiday,
find the truth values of the following statements.
Sunday is not holiday or Ram studies on holiday.
Assuming that the following statement is true,
p : Sunday is holiday,
q : Ram does not study on holiday,
find the truth values of the following statements.
If Sunday is not holiday then Ram studies on holiday.
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
p ↔ ~ q
Fill in the blanks :
Conjunction of two statement p and q is symbolically written as ______.
Fill in the blanks :
Negation of “some men are animal” is –––––––––.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
3 is prime number if 3 is perfect square number.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Kavita is brilliant and brave.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If Kiran drives the car, then Sameer will walk.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
x3 + y3 = (x + y)3 if xy = 0.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
It is not true that Ram is tall and handsome.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If the question paper is not easy then we shall not pass.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
Proof is lengthy and it is not interesting.
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
(p ∧ q) ∨ r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p → r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ p ∨ q
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p→(q ∨ r)
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ (p ∨ q) ∧ r
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If price increases, then demand falls.
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If demand falls, then price does not increase.
Write the negation of the following.
If ∆ABC is not equilateral, then it is not equiangular.
Write the negation of the following.
An angle is a right angle if and only if it is of measure 90°.
Write the negation of the following.
If x ∈ A ∩ B, then x ∈ A and x ∈ B.
Rewrite the following statement without using the connective ‘If ... then’.
If 10 − 3 = 7 then 10 × 3 ≠ 30.
Rewrite the following statement without using the connective ‘If ... then’.
If it rains then the principal declares a holiday.
Consider the following statements.
- If D is dog, then D is very good.
- If D is very good, then D is dog.
- If D is not very good, then D is not a dog.
- If D is not a dog, then D is not very good.
Identify the pairs of statements having the same meaning. Justify.
Write the negation of the following statement.
7 is prime number and Tajmahal is in Agra.
Write the negation of the following statement.
10 > 5 and 3 < 8
Write the negation of the following statement.
I will have tea or coffee.
Write the negation of the following statement.
∀ n ∈ N, n + 3 > 9.
Negation of p → (p ˅ ∼ q) is ______
A biconditional statement is the conjunction of two ______ statements.
If p → q is an implication, then the implication ∼ q → ∼ p is called its
The negation of the statement (p ˄ q) `→` (r ˅ ∼ p) is ______.
Write the following compound statements symbolically.
Triangle is equilateral or isosceles
Without using truth table prove that:
~ (p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form
Even though it is not cloudy, it is still raining
Using truth table prove that p ˅ (q ˄ r) ≡ (p ˅ q) ˄ (p ˅ r)
Without using truth table show that -
(p ˅ q) ˄ (∼p v ∼q) ≡ (p ∧ ∼q) ˄ (∼p ∧ q)
State whether the following statement is True or False:
The converse of inverse of ~ p → q is q → ~ p
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
If (p ∧ ~ r) → (~ p ∨ q) is a false statement, then respective truth values of p, q and r are ______.
Given 'p' and 'q' as true and 'r' as false, the truth values of p v (q ∧ ~r) and (p → r) ∧ q are respectively
If q: There are clouds in the sky then p: it is raining. The symbolic form is ______
If c denotes the contradiction then the dual of the compound statement ∼p ∧ (q ∨ c) is ______
Which of the following is false?
If p and q are true and rands are false statements, then which of the following is true?
Which of the following is NOT true for p → q.
The Boolean expression ∼(q ⇒ ∼p) is equivalent to: ______
The inverse of the statement "If its quality is good. then it is expensive.", is ______
The negation of ∼s ∨ (∼r ∧ s) is equivalent to ______
The statement, 'If I go to school, then I will get knowledge' is equivalent to ______
The Boolean expression ∼(p ∨ q) ∨ (∼p ∧ q) is equivalent to ______
The negation of the statement: "Getting above 95% marks is a necessary condition for Hema to get admission in good college'' is ______
Write the converse, inverse, and contrapositive of the statement. "If 2 + 5 = 10, then 4 + 10 = 20."
If p : A man is happy, q : A man is rich, then the symbolic form of ‘A man is neither happy nor rich is ______.
Write the following statement in symbolic form.
4 is an odd number if 3 is not a prime factor of 6.
Express the following compound statement symbolically:
Delhi is in India but Dhaka is not in Sri Lanka
Express the following compound statement symbolically:
3 + 8 ≥ 12 if and only if 5 × 4 ≤ 25
Using truth table prove that:
~ (p `leftrightarrow` q) ≡ (p ∧ ~ q) ∨ (q ∧ ~ p)
Construct the truth table for the statement pattern:
[(p → q) ∧ q] → p