Advertisements
Advertisements
प्रश्न
Using truth table, prove that ~ p ∧ q ≡ (p ∨ q) ∧ ~ p
उत्तर
1 | 2 | 3 | 4 | 5 | 6 |
p | q | ~p | ~p ∧ q | p ∨ q | (p∨q) ∧~p |
T | T | F | F | T | F |
T | F | F | F | T | F |
F | T | T | T | T | T |
F | F | T | F | F | F |
The entries in columns 4 and 6 are identical
∴ ~p ∧ q ≡ (p ∨ q) ∧ ~ p
APPEARS IN
संबंधित प्रश्न
Using truth table, prove the following logical equivalence:
(p ∧ q) → r ≡ p → (q → r)
Write down the following statements in symbolic form :
(A) A triangle is equilateral if and only if it is equiangular.
(B) Price increases and demand falls
Using truth table prove that ∼p ˄ q ≡ (p ˅ q) ˄ ∼p
Write the following compound statement symbolically.
Nagpur is in Maharashtra and Chennai is in Tamil Nadu.
Write the following compound statement symbolically.
The angle is right angle if and only if it is of measure 90°.
Write the following compound statement symbolically.
Angle is neither acute nor obtuse.
Write the following compound statement symbolically.
If Δ ABC is right-angled at B, then m∠A + m∠C = 90°
Write the following compound statement symbolically.
x is not irrational number but is a square of an integer.
Construct the truth table of the following statement pattern.
[(p → q) ∧ q] → p
Construct the truth table of the following statement pattern.
∼ p ∧ [(p ∨ ∼ q) ∧ q]
Construct the truth table of the following statement pattern.
(∼ p → ∼ q) ∧ (∼ q → ∼ p)
Construct the truth table of the following statement pattern.
[p → (q → r)] ↔ [(p ∧ q) → r]
Construct the truth table of the following statement pattern.
(p ∨ ∼ q) → (r ∧ p)
If p ∧ q is false and p ∨ q is true, then ______ is not true.
Construct the truth table of the following:
(∼p ∨ ∼q) ↔ [∼(p ∧ q)]
Construct the truth table of the following:
∼ (∼p ∧ ∼q) ∨ q
Determine the truth values of p and q in the following case:
(p ∨ q) is T and (p ∨ q) → q is F
Determine the truth values of p and q in the following case:
(p ∧ q) is F and (p ∧ q) → q is T
Express the following statement in symbolic form.
Mango is a fruit but potato is a vegetable.
Express the following statement in symbolic form.
Milk is white or grass is green.
Express the following statement in symbolic form.
I like playing but not singing.
Write the truth value of the following statement.
Earth is a planet and Moon is a star.
Write the truth value of the following statement.
16 is an even number and 8 is a perfect square.
Write the negation of the following statement.
− 3 is a natural number.
Write the negation of the following statement.
2 + 3 ≠ 5
Write the following statement in symbolic form.
It is not true that “i” is a real number.
Write the following statement in symbolic form.
Milk is white if and only if the sky is not blue.
Write the following statement in symbolic form.
Stock prices are high if and only if stocks are rising.
Find the truth value of the following statement.
It is not true that 3 − 7i is a real number.
Find the truth value of the following statement.
Every accountant is free to apply his own accounting rules if and only if machinery is an asset.
Find the truth value of the following statement.
Neither 27 is a prime number nor divisible by 4.
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [(~ p ∨ s) ∧ (~ q ∧ r)]
If p and q are true and r and s are false, find the truth value of the following compound statement.
(p → q) ↔ ~(p ∨ q)
If p and q are true and r and s are false, find the truth value of the following compound statement.
[(p ∨ s) → r] ∨ ~ [~ (p → q) ∨ s]
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [p ∨ (r ∧ s)] ∧ ~ [(r ∧ ~ s) ∧ q]
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
q ∧ ~ p
State whether the following statement is True or False:
The negation of 10 + 20 = 30 is, it is false that 10 + 20 ≠ 30.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
The Sun has set and Moon has risen.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Mona likes Mathematics and Physics.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If Kiran drives the car, then Sameer will walk.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
The necessary condition for existence of a tangent to the curve of the function is continuity.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
It is not true that Ram is tall and handsome.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Even though it is not cloudy, it is still raining.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
It is not true that intelligent persons are neither polite nor helpful.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If the question paper is not easy then we shall not pass.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
If proof is lengthy then it is interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is not true that the proof is lengthy but it is interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is interesting iff the proof is lengthy.
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
(p ∧ q) ∨ r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p→(q ∨ r)
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ (p ∨ q) ∧ r
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If price increases, then demand falls.
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If demand falls, then price does not increase.
Write the negation of the following.
If ∆ABC is not equilateral, then it is not equiangular.
Write the negation of the following.
An angle is a right angle if and only if it is of measure 90°.
Assuming the following statement.
p : Stock prices are high.
q : Stocks are rising.
to be true, find the truth value of the following.
Stock prices are high or stocks are not rising iff stocks are rising.
Rewrite the following statement without using the connective ‘If ... then’.
If it rains then the principal declares a holiday.
Consider the following statements.
- If D is dog, then D is very good.
- If D is very good, then D is dog.
- If D is not very good, then D is not a dog.
- If D is not a dog, then D is not very good.
Identify the pairs of statements having the same meaning. Justify.
Write the negation of the following statement.
10 > 5 and 3 < 8
If p → q is an implication, then the implication ∼ q → ∼ p is called its
Write the following compound statements symbolically.
Triangle is equilateral or isosceles
Write the following statements in symbolic form
Milk is white if and only if the sky is not blue
Choose the correct alternative:
Negation of p → (p ˅ ~q) is
Choose the correct alternative:
A biconditional statement is the conjunction of two ______ statements
Negation of “Some men are animal “ is ______
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form.
If Qutub – Minar is in Delhi then Taj-Mahal is in Agra
If p : Every natural number is a real number.
q : Every integer is a complex number. Then truth values of p → q and p ↔ q are ______ and ______ respectively.
If p, q are true statement and r is false statement, then which of the following statements is a true statement.
The symbolic form of the following circuit is (where p, q represents switches S1 and S2 closed respectively)
Let p : 7 is not greater than 4 and q : Paris is in France by two statements. Then ∼(p ∨ q) is the statement ______
The Boolean expression ∼(q ⇒ ∼p) is equivalent to: ______
The statement, 'If I go to school, then I will get knowledge' is equivalent to ______
Let S be a non-empty subset of R. Consider the following statement:
p: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of the statement p?
The negation of the statement: "Getting above 95% marks is a necessary condition for Hema to get admission in good college'' is ______
The logical statement (∼p → q) ∧ (q → p) is equivalent to: ______
Write the converse, inverse, and contrapositive of the statement. "If 2 + 5 = 10, then 4 + 10 = 20."
Which of the following is logically equivalent to `∼(∼p \implies q)`?
If p : A man is happy, q : A man is rich, then the symbolic form of ‘A man is neither happy nor rich is ______.
Write the following statement in symbolic form.
It is not true that `sqrt(2)` is a rational number.
Express the following compound statement symbolically:
3 + 8 ≥ 12 if and only if 5 × 4 ≤ 25
Write the contrapositive of the inverse of the statement:
‘If two numbers are not equal, then their squares are not equal’.
From the following set of statements, select two statements which have similar meaning.
- If a man is judge, then he is honest.
- If a man is not a judge, then he is not honest.
- If a man is honest, then he is a judge.
- If a man is not honest, then he is not a judge.
Write the negation of (p `leftrightarrow` q).
Construct the truth table for the statement pattern:
[(p → q) ∧ q] → p