Advertisements
Advertisements
प्रश्न
Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]
उत्तर
The degree is 2 as the highest derivative is of order 2.
APPEARS IN
संबंधित प्रश्न
Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively
(A) 2, 3
(B) 3, 2
(C) 7, 2
(D) 3, 7
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)` = cos 3x + sin 3x
For the differential equation given below, indicate its order and degree (if defined).
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
Write the order of the differential equation of the family of circles touching X-axis at the origin.
Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.
The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree (if defined) of the following differential equation:-
y"' + 2y" + y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x2 + 2x + C y' − 2x − 2 = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(1+x^2)` `y'=(xy)/(1+x^2)`
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Determine the order and degree of the following differential equation:
`(dy)/(dx) = (2sin x + 3)/(dy/dx)`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Determine the order and degree of the following differential equation:
`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`
Find the order and degree of the following differential equation:
`x+ dy/dx = 1 + (dy/dx)^2`
Select and write the correct alternative from the given option for the question
The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively
The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation
The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.
The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.
The order of the differential equation of all circles of given radius a is ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
y2 = (x + c)3 is the general solution of the differential equation ______.
The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?