Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
पर्याय
`("d"^2"y")/"dx"^2 + "dy"/"dx" - "y" = 0`
y = x`sqrt(1 + ("dy"/"dx")^2) + "a"^2 "y"`
y = x`"dy"/"dx" + "a" sqrt(1 + ("dy"/"dx")^2)`
`("d"^2"y")/"dx"^2 = ("x + 1")"dy"/"dx"`
उत्तर
y = x`"dy"/"dx" + "a" sqrt(1 + ("dy"/"dx")^2)`
Hint:
x2 + y2 = a2 ∴ 2x + 2y`"dy"/"dx" = 0`
∴ `"dy"/"dx" = - "x"/"y"`
∴ `"x" "dy"/"dx" + "a" sqrt(1 + ("dy"/"dx")^2)`
`= "x"(- "x"/"y") + "a"sqrt(1 + "x"^2/"y"^2) = - "x"^2/"y" + "a" xx "a"/"y"`
`= ("a"^2 - "x"^2)/"y" = "y"^2/"y" = "y"`
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Form the differential equation of family of standard circle
Form the differential equation of y = (c1 + c2)ex
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Form the differential equation of all concentric circles having centre at the origin.