मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the equation of tangent and normal to the following curve. xy = c2 at (ct,ct) where t is parameter. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of tangent and normal to the following curve.

xy = c2 at `("ct", "c"/"t")` where t is parameter.

बेरीज

उत्तर

Equation of the curve is xy = c2

Differentiating w.r.t. x, we get

`"x" "dy"/"dx" + "y" = 0`

∴ `"dy"/"dx" = (- "y")/"x"`

∴ slope of tangent at `("ct", "c"/"t")` is

`("dy"/"dx")_(("ct", "c"/"t")` = `((- "c")/"t")/"ct" = (- 1)/"t"^2`

Equation of tangent at `("ct", "c"/"t")` is

`("y" - "c"/"t") = (-1)/"t"^2 ("x" - "ct")`

∴ yt2 - ct = - x + ct

∴ x + yt2 - 2ct = 0

Slope of normal =`(-1)/((-1)/"t"^2) = "t"^2`

Equation of normal at `("ct", "c"/"t")` is

`("y" - "c"/"t") = "t"^2 ("x" - "ct")`

∴ yt - c = xt3 - ct4

∴ t3x - yt - (t4 - 1)c = 0

shaalaa.com

Notes

The answer in the textbook is incorrect.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Applications of Derivatives - Miscellaneous Exercise 4 [पृष्ठ ११४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Applications of Derivatives
Miscellaneous Exercise 4 | Q 4.1 | पृष्ठ ११४

संबंधित प्रश्‍न

Find the derivative of the following function from first principle.

x3 – 27


Find the derivative of the following function from first principle.

(x – 1) (x – 2)


Find the derivative of the following function from first principle.

`(x+1)/(x -1)`


Find the derivative of the following function from first principle:

(–x)–1


Find the derivative of the following function from first principle: 

`cos (x - pi/8)`


Find the equation of tangent and normal to the curve at the given points on it.

2x2 + 3y2 = 5 at (1, 1)


Find the equation of tangent and normal to the curve at the given points on it.

x2 + y2 + xy = 3 at (1, 1)


Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0.


Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.


Choose the correct alternative.

The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is 


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If elasticity of demand η = 1, then demand is


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


Fill in the blank:

If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______


Find the equation of tangent and normal to the following curve.

y = x2 + 4x at the point whose ordinate is -3.


The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.


State whether the following statement is True or False:

The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0 


Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.


Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×