मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0.

बेरीज

उत्तर

Equation of the curve is y = x2 + 5

Differentiating w.r.t. x, we get

`"dy"/"dx"` = 2x

Slope of the tangent at P(x1, y1) is

`("dy"/"dx")_(("x"_1,"x"_2)` = 2x1

According to the given condition, the tangent is parallel to 4x – y + 1 = 0

Now, slope of the line 4x – y + 1 = 0 is 4.

∴ Slope of the tangent = `"dy"/"dx" = 4`

∴ 2x1 = 4

∴ x1 = 2

P(x1, y1) lies on the curve y = x2 + 5

∴ y1 = (2)2 + 5

∴ y1 = 9

∴ The point on the curve is (2, 9).

∴ Equation of the tangent at (2, 9) is

∴ (y – 9) = 4(x – 2)

∴ y – 9 = 4x – 8

∴ 4x - y + 1 = 0

Slope of the normal at (2, 9) is `1/("dy"/"dx")_((2,9)` = `(- 1)/4`

∴ Equation of the normal of (2, 9) is

(y - 9) = `(-1)/4`(x - 2)

∴ 4y - 36 = - x + 2

∴ x + 4y - 38 = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Applications of Derivatives - Exercise 4.1 [पृष्ठ १०५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Applications of Derivatives
Exercise 4.1 | Q 2 | पृष्ठ १०५

संबंधित प्रश्‍न

Find the derivative of the following function from first principle.

`(x+1)/(x -1)`


Find the derivative of the following function from first principle:

(–x)–1


Find the derivative of the following function from first principle: 

sin (x + 1)


Find the equation of tangent and normal to the curve at the given points on it.

2x2 + 3y2 = 5 at (1, 1)


Choose the correct alternative.

The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is 


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If elasticity of demand η = 1, then demand is


Choose the correct alternative.

If 0 < η < 1, then demand is


Fill in the blank:

The slope of tangent at any point (a, b) is called as _______.


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


State whether the following statement is True or False:

The equation of tangent to the curve y = 4xex at `(-1, (- 4)/"e")` is ye + 4 = 0


State whether the following statement is True or False:

x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).


Find the equation of tangent and normal to the following curve.

xy = c2 at `("ct", "c"/"t")` where t is parameter.


Find the equation of tangent and normal to the following curve.

y = x2 + 4x at the point whose ordinate is -3.


Find the equation of tangent and normal to the following curve.

x = `1/"t",  "y" = "t" - 1/"t"`,  at t = 2


Find the equation of tangent and normal to the following curve.

y = x3 - x2 - 1 at the point whose abscissa is -2.


Choose the correct alternative:

Slope of the normal to the curve 2x2 + 3y2 = 5 at the point (1, 1) on it is 


The slope of the tangent to the curve x = `1/"t"`, y = `"t" - 1/"t"`, at t = 2 is ______


Find the equations of tangent and normal to the curve y = 3x2 – x + 1 at the point (1, 3) on it


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×