Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are
पर्याय
2x – y + 5 = 0; 2x – y – 5 = 0
2x + y + 5 = 0; 2x + y – 5 = 0
x – 2y + 5 = 0; x – 2y – 5 = 0
x + 2y + 5 = 0; x + 2y – 5 = 0
उत्तर
2x – y + 5 = 0; 2x – y – 5 = 0
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function from first principle.
x3 – 27
Find the derivative of the following function from first principle:
−x
Find the derivative of the following function from first principle:
sin (x + 1)
Find the derivative of the following function from first principle:
`cos (x - pi/8)`
Find the equation of tangent and normal to the curve at the given points on it.
y = 3x2 - x + 1 at (1, 3)
Find the equation of tangent and normal to the curve at the given points on it.
2x2 + 3y2 = 5 at (1, 1)
Find the equation of tangent and normal to the curve at the given points on it.
x2 + y2 + xy = 3 at (1, 1)
Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0.
Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.
Choose the correct alternative.
The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is
Choose the correct alternative.
If elasticity of demand η = 1, then demand is
Fill in the blank:
The slope of tangent at any point (a, b) is called as _______.
Fill in the blank:
If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______
Find the equation of tangent and normal to the following curve.
xy = c2 at `("ct", "c"/"t")` where t is parameter.
The slope of the tangent to the curve x = `1/"t"`, y = `"t" - 1/"t"`, at t = 2 is ______
Find the equation of tangent to the curve y = x2 + 4x at the point whose ordinate is – 3
Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.
Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.
y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`