Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are
विकल्प
2x – y + 5 = 0; 2x – y – 5 = 0
2x + y + 5 = 0; 2x + y – 5 = 0
x – 2y + 5 = 0; x – 2y – 5 = 0
x + 2y + 5 = 0; x + 2y – 5 = 0
उत्तर
2x – y + 5 = 0; 2x – y – 5 = 0
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function from first principle.
x3 – 27
Find the derivative of the following function from first principle.
`1/x^2`
Find the derivative of the following function from first principle.
`(x+1)/(x -1)`
Find the derivative of the following function from first principle:
(–x)–1
Find the equation of tangent and normal to the curve at the given points on it.
x2 + y2 + xy = 3 at (1, 1)
Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.
Choose the correct alternative.
The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is
Choose the correct alternative.
If elasticity of demand η = 1, then demand is
Choose the correct alternative.
If 0 < η < 1, then demand is
Choose the correct alternative.
If f(x) = 3x3 - 9x2 - 27x + 15 then
Fill in the blank:
If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______
Find the equation of tangent and normal to the following curve.
xy = c2 at `("ct", "c"/"t")` where t is parameter.
Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.
Choose the correct alternative:
Slope of the normal to the curve 2x2 + 3y2 = 5 at the point (1, 1) on it is
State whether the following statement is True or False:
The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0
Find the equations of tangent and normal to the curve y = 3x2 – x + 1 at the point (1, 3) on it
Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.
Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.