Advertisements
Advertisements
प्रश्न
Fill in the blank:
If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______
उत्तर
If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is 14x-3.
Explanation:
f(x) = `7/"x" - 3`
∴ f '(x) = `(-7)/"x"^2`
∴ f ''(x) = `14/"x"^3`
`= 14"x"^-3`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function from first principle.
`1/x^2`
Find the derivative of the following function from first principle.
`(x+1)/(x -1)`
Find the derivative of the following function from first principle:
(–x)–1
Find the equation of tangent and normal to the curve at the given points on it.
y = 3x2 - x + 1 at (1, 3)
Find the equation of tangent and normal to the curve at the given points on it.
2x2 + 3y2 = 5 at (1, 1)
Find the equation of tangent and normal to the curve at the given points on it.
x2 + y2 + xy = 3 at (1, 1)
Choose the correct alternative.
If elasticity of demand η = 1, then demand is
Fill in the blank:
The slope of tangent at any point (a, b) is called as _______.
State whether the following statement is True or False:
x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).
Find the equation of tangent and normal to the following curve.
xy = c2 at `("ct", "c"/"t")` where t is parameter.
Find the equation of tangent and normal to the following curve.
y = x2 + 4x at the point whose ordinate is -3.
Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.
The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.
Find the equation of tangent to the curve x2 + y2 = 5, where the tangent is parallel to the line 2x – y + 1 = 0
Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.
Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.
y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`
Find the equations of tangent and normal to the curve y = 6 - x2 where the normal is parallel to the line x - 4y + 3 = 0