हिंदी

The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.

विकल्प

  • – 8

  • 8

  • 16

  • – 16

MCQ
रिक्त स्थान भरें

उत्तर

The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is 16.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.4: Applications of Derivatives - Q.1

संबंधित प्रश्न

Find the derivative of the following function from first principle.

(x – 1) (x – 2)


Find the derivative of the following function from first principle:

−x


Find the derivative of the following function from first principle: 

`cos (x - pi/8)`


Find the equation of tangent and normal to the curve at the given points on it.

2x2 + 3y2 = 5 at (1, 1)


Find the equation of tangent and normal to the curve at the given points on it.

x2 + y2 + xy = 3 at (1, 1)


Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If elasticity of demand η = 1, then demand is


Choose the correct alternative.

If 0 < η < 1, then demand is


Choose the correct alternative.

If f(x) = 3x3 - 9x2 - 27x + 15 then


Fill in the blank:

The slope of tangent at any point (a, b) is called as _______.


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


Fill in the blank:

If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______


Find the equation of tangent and normal to the following curve.

x = `1/"t",  "y" = "t" - 1/"t"`,  at t = 2


Find the equation of tangent and normal to the following curve.

y = x3 - x2 - 1 at the point whose abscissa is -2.


Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.


The slope of the tangent to the curve x = `1/"t"`, y = `"t" - 1/"t"`, at t = 2 is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×