हिंदी

Find the equation of tangent and normal to the following curve. y = x3 - x2 - 1 at the point whose abscissa is -2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of tangent and normal to the following curve.

y = x3 - x2 - 1 at the point whose abscissa is -2.

योग

उत्तर

Equation of the curve is y = x3 - x2 - 1    ...(i)

Differentiating w.r.t. x, we get

`"dy"/"dx" = 3"x"^2 - 2"x"`

If x = - 2,       ....[Given]

Putting the value of x in (i), we get

y = (- 2)3 - (- 2)2 - 1 = - 8 - 4 - 1 = - 13

∴ Point is P (x1, y1) ≡ (-2, -13)

Slope of tangent at (- 2,- 13) is

`("dy"/"dx")_((-2, -13)` = 2(-2)2 - 2(-2) = 12 + 4 = 16

Equation of tangent at (- 2, -13) is

y - y= `("dy"/"dx")_(("x" = -2)` (x - x1)

∴ y - (- 13) = 16 [x - (- 2)]

∴ y + 13 = 16x + 32

∴ 16x - y + 19 = 0

Slope of normal at (- 2, - 13) is `(-1)/("dy"/"dx")_((-2, -13)` = `- 1/16`

Equation of normal at (-2, - 13) is

∴ y + 13 = `(-1)/16`(x + 2)

∴ x + 16y + 210 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Applications of Derivatives - Miscellaneous Exercise 4 [पृष्ठ ११४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Applications of Derivatives
Miscellaneous Exercise 4 | Q 4.1 | पृष्ठ ११४

संबंधित प्रश्न

Find the derivative of the following function from first principle.

`1/x^2`


Find the derivative of the following function from first principle.

`(x+1)/(x -1)`


Find the derivative of the following function from first principle:

−x


Find the derivative of the following function from first principle:

(–x)–1


Find the derivative of the following function from first principle: 

sin (x + 1)


Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If elasticity of demand η = 1, then demand is


Choose the correct alternative.

If f(x) = 3x3 - 9x2 - 27x + 15 then


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


Fill in the blank:

If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______


State whether the following statement is True or False:

The equation of tangent to the curve y = 4xex at `(-1, (- 4)/"e")` is ye + 4 = 0


State whether the following statement is True or False:

x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).


Find the equation of tangent and normal to the following curve.

y = x2 + 4x at the point whose ordinate is -3.


Choose the correct alternative:

Slope of the normal to the curve 2x2 + 3y2 = 5 at the point (1, 1) on it is 


State whether the following statement is True or False:

The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0 


Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.


y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`


Find the equations of tangent and normal to the curve y = 6 - x2 where the normal is parallel to the line x - 4y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×