हिंदी

Find the derivative of the following function from first principle: −x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function from first principle:

−x

योग

उत्तर

Let f(x) = –x Accordingly, f(x + h)  = -(x + h)

By first principle,

f'(x) = `lim_(h->0)(f(x + h) -f(x))/h`

= `lim_(h->0)(-(x + h) -(-x))/h`

= `lim_(h->0)(-x - h + x)/h`

= `lim_(h->0)(-h)/h`

= `lim_(h->0) (-1) -1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Miscellaneous Exercise | Q 1.1 | पृष्ठ ३१७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function from first principle.

x3 – 27


Find the derivative of the following function from first principle.

(x – 1) (x – 2)


Find the derivative of the following function from first principle.

`1/x^2`


Find the derivative of the following function from first principle: 

sin (x + 1)


Find the equation of tangent and normal to the curve at the given points on it.

y = 3x2 - x + 1 at (1, 3)


Find the equation of tangent and normal to the curve at the given points on it.

2x2 + 3y2 = 5 at (1, 1)


Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0.


Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.


Choose the correct alternative.

The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is 


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If elasticity of demand η = 1, then demand is


Choose the correct alternative.

If 0 < η < 1, then demand is


Choose the correct alternative.

If f(x) = 3x3 - 9x2 - 27x + 15 then


Fill in the blank:

The slope of tangent at any point (a, b) is called as _______.


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


Fill in the blank:

If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______


Find the equation of tangent and normal to the following curve.

y = x2 + 4x at the point whose ordinate is -3.


Find the equation of tangent and normal to the following curve.

y = x3 - x2 - 1 at the point whose abscissa is -2.


The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.


Choose the correct alternative:

Slope of the normal to the curve 2x2 + 3y2 = 5 at the point (1, 1) on it is 


The slope of the tangent to the curve x = `1/"t"`, y = `"t" - 1/"t"`, at t = 2 is ______


State whether the following statement is True or False:

The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0 


Find the equation of tangent to the curve x2 + y2 = 5, where the tangent is parallel to the line 2x – y + 1 = 0


Find the equation of tangent to the curve y = x2 + 4x at the point whose ordinate is – 3


Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.


Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.


y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×