English

The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.

Options

  • – 8

  • 8

  • 16

  • – 16

MCQ
Fill in the Blanks

Solution

The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is 16.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.4: Applications of Derivatives - Q.1

APPEARS IN

RELATED QUESTIONS

Find the derivative of the following function from first principle.

x3 – 27


Find the derivative of the following function from first principle.

`1/x^2`


Find the derivative of the following function from first principle.

`(x+1)/(x -1)`


Find the derivative of the following function from first principle:

−x


Find the derivative of the following function from first principle: 

`cos (x - pi/8)`


Find the equation of tangent and normal to the curve at the given points on it.

y = 3x2 - x + 1 at (1, 3)


Find the equation of tangent and normal to the curve at the given points on it.

2x2 + 3y2 = 5 at (1, 1)


Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.


Choose the correct alternative.

If f(x) = 3x3 - 9x2 - 27x + 15 then


State whether the following statement is True or False:

x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).


Find the equation of tangent and normal to the following curve.

y = x2 + 4x at the point whose ordinate is -3.


Find the equation of tangent and normal to the following curve.

x = `1/"t",  "y" = "t" - 1/"t"`,  at t = 2


Find the equation of tangent and normal to the following curve.

y = x3 - x2 - 1 at the point whose abscissa is -2.


Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.


State whether the following statement is True or False:

The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0 


Find the equation of tangent to the curve y = x2 + 4x at the point whose ordinate is – 3


y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×