Advertisements
Advertisements
Question
The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.
Options
– 8
8
16
– 16
Solution
The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is 16.
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function from first principle.
x3 – 27
Find the derivative of the following function from first principle.
`1/x^2`
Find the derivative of the following function from first principle.
`(x+1)/(x -1)`
Find the derivative of the following function from first principle:
−x
Find the derivative of the following function from first principle:
`cos (x - pi/8)`
Find the equation of tangent and normal to the curve at the given points on it.
y = 3x2 - x + 1 at (1, 3)
Find the equation of tangent and normal to the curve at the given points on it.
2x2 + 3y2 = 5 at (1, 1)
Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.
Choose the correct alternative.
If f(x) = 3x3 - 9x2 - 27x + 15 then
State whether the following statement is True or False:
x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).
Find the equation of tangent and normal to the following curve.
y = x2 + 4x at the point whose ordinate is -3.
Find the equation of tangent and normal to the following curve.
x = `1/"t", "y" = "t" - 1/"t"`, at t = 2
Find the equation of tangent and normal to the following curve.
y = x3 - x2 - 1 at the point whose abscissa is -2.
Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.
State whether the following statement is True or False:
The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0
Find the equation of tangent to the curve y = x2 + 4x at the point whose ordinate is – 3
y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`