English

Find the derivative of the following function from first principle. x3 – 27 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function from first principle.

x3 – 27

Sum

Solution

Let f(x) = x3 – 27. Accordingly, from the first principle,

`f'(x) = lim_(h->0)(f(x + h) - f(x))/h`

= `lim_(h->0)([(x + h)^3 - 27] - (x^3 - 27))/h`

= `lim_(h->0)(x^3 + h^3 + 3x^2h + 3xh^2 - x^3)/h`

= `lim_(h->0) (h^3 + 3x^2h + 3xh^2)/h`

= `lim_(h->0) (h^3 + 3x^2 + 3xh)`

= 0 + 3x2 + 0

= 3x2

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 312]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 4.1 | Page 312

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function from first principle.

(x – 1) (x – 2)


Find the derivative of the following function from first principle.

`1/x^2`


Find the derivative of the following function from first principle:

(–x)–1


Find the derivative of the following function from first principle: 

`cos (x - pi/8)`


Find the equation of tangent and normal to the curve at the given points on it.

y = 3x2 - x + 1 at (1, 3)


Find the equation of tangent and normal to the curve at the given points on it.

2x2 + 3y2 = 5 at (1, 1)


Find the equation of tangent and normal to the curve at the given points on it.

x2 + y2 + xy = 3 at (1, 1)


Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0.


Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.


Choose the correct alternative.

The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is 


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If elasticity of demand η = 1, then demand is


Choose the correct alternative.

If 0 < η < 1, then demand is


Choose the correct alternative.

If f(x) = 3x3 - 9x2 - 27x + 15 then


Fill in the blank:

The slope of tangent at any point (a, b) is called as _______.


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


Fill in the blank:

If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______


Find the equation of tangent and normal to the following curve.

xy = c2 at `("ct", "c"/"t")` where t is parameter.


Find the equation of tangent and normal to the following curve.

x = `1/"t",  "y" = "t" - 1/"t"`,  at t = 2


Find the equation of tangent and normal to the following curve.

y = x3 - x2 - 1 at the point whose abscissa is -2.


Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.


The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.


The slope of the tangent to the curve x = `1/"t"`, y = `"t" - 1/"t"`, at t = 2 is ______


Find the equations of tangent and normal to the curve y = 3x2 – x + 1 at the point (1, 3) on it


Find the equation of tangent to the curve x2 + y2 = 5, where the tangent is parallel to the line 2x – y + 1 = 0


Find the equation of tangent to the curve y = x2 + 4x at the point whose ordinate is – 3


Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.


Find the equations of tangent and normal to the curve y = 6 - x2 where the normal is parallel to the line x - 4y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×