English

Choose the correct alternative. If elasticity of demand η = 1, then demand is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative.

If elasticity of demand η = 1, then demand is

Options

  • constant

  • inelastic

  • unitary elastic

  • elastic

MCQ

Solution

unitary elastic

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Applications of Derivatives - Miscellaneous Exercise 4 [Page 113]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Applications of Derivatives
Miscellaneous Exercise 4 | Q 1.3 | Page 113

RELATED QUESTIONS

Find the derivative of the following function from first principle.

x3 – 27


Find the derivative of the following function from first principle.

`1/x^2`


Find the derivative of the following function from first principle.

`(x+1)/(x -1)`


Find the derivative of the following function from first principle: 

sin (x + 1)


Find the derivative of the following function from first principle: 

`cos (x - pi/8)`


Choose the correct alternative.

The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is 


Choose the correct alternative.

The equation of tangent to the curve x2 + y2 = 5 where the tangent is parallel to the line 2x – y + 1 = 0 are


Choose the correct alternative.

If f(x) = 3x3 - 9x2 - 27x + 15 then


Fill in the blank:

If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______


Fill in the blank:

If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______


Find the equation of tangent and normal to the following curve.

xy = c2 at `("ct", "c"/"t")` where t is parameter.


Find the equation of tangent and normal to the following curve.

x = `1/"t",  "y" = "t" - 1/"t"`,  at t = 2


The slope of the tangent to the curve x = `1/"t"`, y = `"t" - 1/"t"`, at t = 2 is ______


Find the equations of tangent and normal to the curve y = 3x2 – x + 1 at the point (1, 3) on it


Find the equation of tangent to the curve x2 + y2 = 5, where the tangent is parallel to the line 2x – y + 1 = 0


Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.


y = ae2x + be-3x is a solution of D.E. `(d^2y)/dx^2 + dy/dx + by = 0`


Find the equations of tangent and normal to the curve y = 6 - x2 where the normal is parallel to the line x - 4y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×