Advertisements
Advertisements
Question
Find the equation of tangent and normal to the following curve.
y = x2 + 4x at the point whose ordinate is -3.
Solution
Equation of the curve is y = x2 + 4x ....(i)
Differentiating w.r.t. x, we get
`"dy"/"dx" = 2"x"+ 4`
y = −3 ...[Given]
Putting the value of y in (i), we get
- 3 = x2 + 4x
∴ x2 + 4x + 3 = 0
∴ (x + 1)(x + 3) = 0
∴ x = −1 or x = −3
For x = −1, y = (−1)2 + 4(−1) = −3
∴ Point is (x, y) = (−1, −3)
Slope of tangent at (–1, –3) is `"dy"/"dx"` = 2(−1) + 4 = 2
Equation of tangent at (−1, −3) is
y + 3 = 2(x + 1)
∴ y + 3 = 2x + 2
∴ 2x − y − 1 = 0
Slope of normal at (–1, –3) is `(-1)/("dy"/"dx") = (-1)/2`
Equation of normal at (–1, –3) is
y + 3 = `(-1)/2` (x + 1)
∴ 2y + 6 = −x − 1
∴ x + 2y + 7 = 0
For x = −3, y = ( −3)2 + 4(−3) = −3
∴ Point is (x, y) = (−3, −3)
Slope of tangent at (–3, –3) = 2(−3) + 4 = −2
Equation of tangent at (−3, −3) is
y + 3 = −2(x + 3)
∴ y + 3 = −2x − 6
∴ 2x + y + 9 = 0
Slope of normal at (– 3, – 3) is `(-1)/("dy"/"dx") = 1/2`
Equation of normal at (- 3, - 3) is
y + 3 = `1/2`(x + 3)
∴ 2y + 6 = x + 3
∴ x − 2y − 3 = 0
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function from first principle.
x3 – 27
Find the derivative of the following function from first principle.
(x – 1) (x – 2)
Find the derivative of the following function from first principle.
`(x+1)/(x -1)`
Find the derivative of the following function from first principle:
−x
Find the derivative of the following function from first principle:
sin (x + 1)
Find the equation of tangent and normal to the curve at the given points on it.
y = 3x2 - x + 1 at (1, 3)
Find the equation of tangent and normal to the curve at the given points on it.
2x2 + 3y2 = 5 at (1, 1)
Find the equations of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x − y + 1 = 0.
Find the equations of tangent and normal to the curve y = 3x2 - 3x - 5 where the tangent is parallel to the line 3x − y + 1 = 0.
Choose the correct alternative.
The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is
Fill in the blank:
If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______
State whether the following statement is True or False:
The equation of tangent to the curve y = 4xex at `(-1, (- 4)/"e")` is ye + 4 = 0
State whether the following statement is True or False:
x + 10y + 21 = 0 is the equation of normal to the curve y = 3x2 + 4x - 5 at (1, 2).
Find the equation of tangent and normal to the following curve.
xy = c2 at `("ct", "c"/"t")` where t is parameter.
Find the equation of tangent and normal to the following curve.
x = `1/"t", "y" = "t" - 1/"t"`, at t = 2
Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.
The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.
Choose the correct alternative:
Slope of the normal to the curve 2x2 + 3y2 = 5 at the point (1, 1) on it is