Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Slope of the normal to the curve 2x2 + 3y2 = 5 at the point (1, 1) on it is
पर्याय
`-2/3`
`2/3`
`3/2`
`-3/2`
उत्तर
`3/2`
संबंधित प्रश्न
Find the derivative of the following function from first principle.
(x – 1) (x – 2)
Find the derivative of the following function from first principle.
`(x+1)/(x -1)`
Find the derivative of the following function from first principle:
−x
Find the derivative of the following function from first principle:
(–x)–1
Find the derivative of the following function from first principle:
sin (x + 1)
Find the derivative of the following function from first principle:
`cos (x - pi/8)`
Choose the correct alternative.
The equation of tangent to the curve y = x2 + 4x + 1 at (-1, -2) is
Choose the correct alternative.
If f(x) = 3x3 - 9x2 - 27x + 15 then
Fill in the blank:
The slope of tangent at any point (a, b) is called as _______.
Fill in the blank:
If f(x) = x - 3x2 + 3x - 100, x ∈ R then f''(x) is ______
Fill in the blank:
If f(x) = `7/"x" - 3`, x ∈ R x ≠ 0 then f ''(x) is ______
State whether the following statement is True or False:
The equation of tangent to the curve y = 4xex at `(-1, (- 4)/"e")` is ye + 4 = 0
Find the equation of tangent and normal to the following curve.
y = x2 + 4x at the point whose ordinate is -3.
Find the equation of tangent and normal to the following curve.
x = `1/"t", "y" = "t" - 1/"t"`, at t = 2
Find the equation of normal to the curve y = `sqrt(x - 3)` which is perpendicular to the line 6x + 3y – 4 = 0.
The slope of the tangent to the curve y = x3 – x2 – 1 at the point whose abscissa is – 2, is ______.
State whether the following statement is True or False:
The equation of tangent to the curve y = x2 + 4x + 1 at (– 1, – 2) is 2x – y = 0
Find the equations of tangent and normal to the curve y = 3x2 – x + 1 at the point (1, 3) on it
Slope of the tangent to the curve y = 6 – x2 at (2, 2) is ______.
Find the equation of tangent and normal to the curve y = x2 + 5 where the tangent is parallel to the line 4x – y + 1 = 0.