मराठी

If a Unit Vector `Vec A` Makes an Angle \[\Frac{\Pi}{3} \Text{ with } \Hat{I} , \Frac{\Pi}{4} \Text{ with } \Hat{J}\] and an Acute Angle θ with \[\Hat{ K} \] ,Then Find the Value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.

बेरीज

उत्तर

\[ \text { Since a unit vector makes an angle of } \frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text { with } \hat {j}  \text{ and an acute angle }  \theta \text{ with } \hat{k}  , l = \cos \frac{\pi}{3} \text { or } \frac{1}{2}, m = \cos \frac{\pi}{4}\text { or } \frac{1}{\sqrt{2}} \text { and } n = \cos \theta . \]

\[\text{ We know } \]

\[ l^2 + m^2 + n^2 = 1\]

\[ \Rightarrow \left( \frac{1}{2} \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2 + \cos^2 \theta = 1\]

\[ \Rightarrow \frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1 \]

\[ \Rightarrow \cos^2 \theta = \frac{1}{4}\]

\[ \Rightarrow \cos \theta = \frac{1}{2} \]

\[ \Rightarrow \theta = \frac{\pi}{3}\]

\[\text { Thus, the vector }  \vec{a} \text { makes an angle of } \frac{\pi}{3} \text { with }  \hat {k}  .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Very Short Answers [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 19 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the distance of the point P (xyz) from XOY plane.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×