Advertisements
Advertisements
प्रश्न
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
उत्तर
`3vec"a"- 2vec"b"+ 5vec"c" = 3(2hat"i" + hat"j" - 4hat"k") -2(3hat"i" - 4hat"j" - 5hat"k") + 5(-3hat"i" + 2hat"j" + 3hat"k")`
= `6hat"i" + 9hat"j" - 12hat"k" - 6hat"i" + 8hat"j" + 10hat"k" - 15hat"i" + 10hat"j" + 15hat"k"`
`3vec"a"- 2vec"b"+ 5vec"c" = -15hat"i" + 27hat"j" + 13hatk"`
`|3vec"a"- 2vec"b"+ 5vec"c"| = |-15hat"i" + 27hat"j" + 13hatk"|`
= `sqrt((-1)^2 + (27)^2 + 13^2`
=`sqrt(225 + 729 + 169)`
`|3vec"a"- 2vec"b"+ 5vec"c"| = sqrt(1123)`
Direction cosines of the vector `3vec"a"- 2vec"b"+ 5vec"c"` are
`[(-15)/|-15hat"i" + 27hat"j" + 1hat"k"|, 27/|-15hat"i" + 27hat"j" + 13hat"k"|, 13/|-15hat"i" + 27hat"j" + 13hat"k"|`
`[(-15)/sqrt(113), 27/sqrt(1123), 13/sqrt(123)]`
∴ The magnitude and direction cosines of the vector `3vec"a"- 2vec"b"+ 5vec"c"` are
`sqrt(1123), [(-15)/sqrt(113), 27/sqrt(1123), 13/sqrt(123)]`
APPEARS IN
संबंधित प्रश्न
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Write the distance of the point (3, −5, 12) from X-axis?
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Find the distance of the point (2, 3, 4) from the x-axis.
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.