Advertisements
Advertisements
प्रश्न
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
उत्तर
Any point on the given line is `(x - 3)/2 = (y - 3)/1 = z/1 = lambda`
⇒ x = 2λ + 3, y = λ + 3
And z = λ
Let it be the coordinates of P
∴ Direction ratios of OP are (2λ + 3 – 0), (λ + 3 – 0) and (λ – 0)
⇒ 2λ + 3, λ + 3, λ
But the direction ratios of the line PQ are 2, 1, 1
∴ `cos theta = ("a"_1"a"_2 + "b"_1"b"_2 + "c"_1"c"_2)/(sqrt("a"_1^2 + "b"_1^2 + "c"_1^2)*sqrt("a"_2^2 + "b"_2^2 + "c"_2^2)`
`cos pi/3 = (2(2lambda + 3) + 1(lambda + 3) + 1.lambda)/(sqrt((2)^2 + (1)^2 + (1)^2) * sqrt((2lambda + 3)^2 + (lambda + 3)^2 + lambda^2)`
⇒ `1/2 = (4lambda + 6 + lambda + 3 + lambda)/(sqrt(6) * sqrt(4lambda^2 + 9 + 12lambda + lambda^2 + 9 + 6lambda + lambda^2)`
⇒ `sqrt(6)/2 = (6lambda + 9)/sqrt(6lambda^2 + 18lambda + 18)`
= `(6lambda + 9)/(sqrt(6)sqrt(lambda^2 + 3lambda + 3)`
⇒ `6/2 = (3(2lambda + 3))/sqrt(lambda^2 + 3lambda + 3)`
⇒ 3 = `(3(2lambda + 3))/sqrt(lambda^2 + 3lambda + 3)`
⇒ 1 = `(2lambda + 3)/sqrt(lambda^2 + 3lambda + 3)`
⇒ `sqrt(lambda^2 + 3lambda + 3) = 2lambda + 3`
⇒ λ2 + 3λ+ 3 = 4λ2 + 9 + 12λ ......(Squaring both sides)
⇒ 3λ2 + 9λ + 6 = 0
⇒ λ2 + 3λ + 2 = 0
⇒ (λ + 1)(λ + 2) = 0
∴ λ = – 1, λ = – 2
∴ Direction ratios are [2(– 1) + 3, – 1 + 3, – 1]
i.e., 1, 2, – 1
When λ = – 1 and [2(– 2) + 3, – 2 + 3, – 2]
i.e., – 1, 1, – 2
When λ = – 2.
Hence, the required equations are
`x/1 = y/2 = z/(-1)` and `x/(-1) = y/1 = z/(-2)`.
APPEARS IN
संबंधित प्रश्न
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Write the distance of the point (3, −5, 12) from X-axis?
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`3hat"i" + hat"j" + hat"k"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.